用户名: 密码: 验证码:
生防菌盾壳霉产生抗真菌物质及其特性和防病潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜菌核病是由核盘菌[Sclerotinia sclerotiorum(Lib.)de Bary]引起的一种世界性分布的重要病害。重寄生菌盾壳霉(Coniothyrium minitans)是一种应用前景广阔的生防菌。前人对盾壳霉寄生核盘菌的机制及其防病潜力进行了深入研究。McQuilken et al.(2003)报道了盾壳霉抑制核盘菌菌丝生长的抗生机制,并从盾壳霉培养物中分离和鉴定出抗真菌物质(Antifungal substance,简称AFS)macrosphelideA。但对其产生的规律、基本特性、能否抑制核盘菌菌核及子囊孢子萌发、是否能够产生防病效果等问题还不明确。针对这些问题,我们开展了盾壳霉产生AFS及其特性和防病潜力研究。
     用改良的查彼培养液(MCD)培养盾壳霉,制备含AFS的盾壳霉培养物滤液(MCD_(cm))。在马铃薯葡萄糖琼脂培养基(PDA)上测定其对核盘菌菌丝生长、菌核萌发和子囊孢子萌发的抑制作用。结果表明:盾壳霉AFS对核盘菌菌丝生长具有明显的抑制作用。随MCD_(cm)(含AFS)浓度(x)提高,抑菌活性(y)增强。两者之间的关系符合方程:y=19.268Ln(x)+44.152(R~2=0.9703,P<0.01)。被抑制的核盘菌菌丝原生质出现颗粒化及外渗,菌丝细胞膨大,甚至溃解等异常现象。用MCD_(cm)处理核盘菌菌核之后,菌核萌发延迟,但最终能完全萌发。说明盾壳霉AFS对核盘菌菌核没有致死效应,但有一定程度的毒害作用;在含有MCD_(cm)的PDA平板上,核盘菌子囊孢子能够萌发,培养12h的萌发率达到99.4%,但芽管生长受到明显抑制,出现细胞膨大和生长受阻等症状。
     采用MCD培养液和马铃薯葡萄糖培养液(potato dextrose broth,简称PDB)振荡培养(20℃,200r/min)的方法研究了菌株和培养基种类对盾壳霉产生AFS的影响。结果表明:盾壳霉野生菌株Chy-1及其突变菌株Uv-2003能够产生AFS,而Chy-1的另外两个突变菌株Uv-202和Uv-1731却不能产生AFS。在MCD培养液中,培养盾壳霉6d后即检测到AFS活性,培养12d~15d后,培养液对核盘菌菌丝生长的抑制率分别达到86.4%和89.7%。在3d~15d培养期间,培养液的pH值从4.6下降为3.6。在PDB培养液中,培养3d~15d后,培养液对核盘菌菌丝生长的抑制率低于17.8%。培养6d后,培养液的pH值从5.9(0d)上升至7.5,培养15d后,pH值下降为6.0。
     分别以MCD和PDB为基础,研究碳源、氮源、磷酸盐和环境pH值对盾壳霉产生AFS的影响。在碳源试验中,以MCD为基础时,供试7种碳源中,盾壳霉利用6种碳源(可溶性淀粉、蔗糖、麦芽糖、葡萄糖、乳糖和果糖)能产生AFS。葡萄糖和果糖对盾壳霉产生AFS最为适宜,而山梨醇则不适宜。以PDB为基础时,7种供试碳源中,果糖和乳糖对盾壳霉产生AFS适宜,其它5种碳源
Sclerotinia stem rot caused by Sclerotinia sclerotiorum (Lib) de Bary is an important disease of oilseed rape with a worldwide distribution. Coniothyrium minitans Campbell is an effective biocontrol agent of S. sclerotiorum. The mycoparasitism of C. minitans on S. sclerotiorum was profoundly studied and exploited as a mechanism in biological control. McQuilken et al. (2003) reported that C. minitans could produce antifungal substances (shorted as AFS_(cm)) and an inhibitory metabolite named macrosphelide A was identified. However, the antifungal mechanisms involved in interaction between C. minitans and S. sclerotiorum are still unknown and need to be clarified. The purpose of this thesis is aimed at answering questions including: (1) the effect of AFS_(cm) on germination of sclerotia or ascospores of S. sclerotiorum; (2) effect of nutritional factors on production of AFS_(cm); (3) basic properties about the AFS_(cm); and (4) efficacy of the AFS_(cm) in suppression of the infection by S. sclerotiorum.
    The modified Czapek-Dox (MCD) was used to incubate C. minitans and the AFS-containing cultural filtrate (MCD_(cm)) was used to test its inhibitory effect on mycelial growth of S. sclerotiorum, on germination of sclerotia and ascospores of this fungus. The results demonstrated that MCD_(cm) did inhibit mycelial growth (MG) of S. sclerotiorum and the relationship between the concentration of MCD_(cm) (x) amended in potato dextrose agar (PDA) and the percentage of inhibition of MG (y) fitted the equation : y=19.268Ln(x)+44.152 (R~2=0.9703, P<0.01). The inhibited mycelia of 5. sclerotiorum showed severe abnormal symptoms including cytoplasma granulation and outward leakage, cellular swelling and collapse. Treartment of S. sclerotiorum sclerotia with AFS_(cm) resulted in a delay in myceliogenic germination implying that the AFS_(cm) was toxic to sclerotial cells, however, without any lethal effect. On PDA plates with and without the amendment of AFS_(cm), ascospores of S. sclerotiorum germinated at 99.4% and 98.8%, respectively, after incubation for 12 h. However, growth of the germ tubes were suppressed by the formation of swollen cells in the presence of AFS_(cm).
    Strains of C. minitans, and media MCD/PDB were compared for production of AFS under the shaking incubation conditions (20 ℃ and 200r/min). The results showed that the wild-type strain Chy-1 of C. minitans and its mutated strainUv-2003 were able to produce AFS, whereas other two mutated strains Uv-202 and Uv-1731 was unable to produce AFS. Production of AFS differed greatly in the media MCD and
引文
1.高俊明,王双双,刘慧平,韩巨才.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,2002,22(1):22-25.
    2.胡燕梅.盾壳霉产生的几丁质酶及其作用研究.[硕士学位论文].武汉,华中农业大学,2004.
    3.黄剑华,陆瑞菊,张玉华.应用离体培养技术奠定不结球白菜耐热性及诱导耐热变异体.上海农业学报,1995,11:18-22.
    4.姜道宏,李国庆,付艳平,易先宏和王道本.盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究.植物病理学报,2000,30(1):60-65.
    5.姜道宏,李国庆,易先宏,等.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28(1):29-32.
    6.姜道宏.核盘菌寄生菌盾壳霉(Coniothyrium minitans)的生物学及其寄生生态学研究.[硕士学位论文].武汉,华中农业大学,1995.
    7.李国庆,王道本,黄鸿章,周启.来源于佳木斯茄子上的核盘菌菌株多样性的研究.植物病理学报,1996,26:237-242.
    8.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究Ⅰ生物学生性及在湖北省的自然分布.华中农业大学学报,1995,14(2):125-129.
    9.李国庆,王道本.拮抗细菌的筛选及其对油菜菌核病的防治效果.华中农业大学学报,1991,10(1):30-35.
    10.李季伦,张伟心,杨启瑞,许耀才,赵良启.微生物生理学.北京:北京农业大学出版社,1993,388-395.
    11.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15(1):1-5.
    12.李世东,刘杏忠.食菌核葚孢霉—一种有潜力的菌核病生防菌.中国生物防治,2000,16:177-182.
    13.刘胜毅,周必文.油料作物病原菌核上寄生菌及其防治病害研究述评.国外农学-油料作物,1992,(2):1-7.
    14.刘惕若,王守正,李丽丽.油料作物病害及其防治.上海,上海科学技术出版社,1983,p109-120.
    15.罗宽,任新国,周必文,陈道炎,杨建.油菜菌核病菌菌核上寄生真菌的研究.中国油料,1987,3:40-44.
    16.缪华军.盾壳霉抗杀菌剂农利灵突变菌株的获得、特性及其应用的研究.[硕士学位论文].武汉:华中农业大学图书馆,2004.
    17.潘以楼,汪智渊,吴汉章.油菜菌核病对多菌灵的抗药性及其稳定性.江苏农业科学, 1997,13:32-35.
    18.任莉,胡燕梅,李国庆.核盘菌重寄生菌盾壳霉降解草酸毒素的研究.见:王国平,贺红武主编,植物保护和农药学研究进展.第三届湖北湖南植保农药学术研讨会,武汉,2004,武汉:中国农业出版社,2004,148-154.
    19.师俊玲,堵国成,陈坚.盾壳霉在油菜菌核病菌生物防治中的应用.中国生物工程杂志,2003,23(4):27-31.
    20.王道本译.核盘菌论丛.北京农业大学出版,1986.
    21.王伍.核盘菌寄生菌盾壳霉的诱变改良研究.[硕士学位论文].武汉:华中农业大学图书馆,1997.
    22.韦善君,陈学章,李国庆,姜道宏和王道本.盾壳霉在油菜花瓣上萌发的影响因子分析.华中农业大学学报,1999,18(6):554-557.
    23.韦善君,李国庆,姜道宏,王道本.草酸对重寄生真菌盾壳霉分生孢子萌发和菌丝生长的影响.植物病理学报,2004,34(3):199-203.
    24.杨谦,张翼鹏.核盘菌子囊盘形成的影响因子.东北林业大学学报,1995,3(23):126-130.
    25.杨新美.油菜菌核病Sclerotinia sclerotiorum在我国的寄主范围及生态特性的调查研究.植物病理学,1959,2:111-121.
    26.张丽华,党本元,周奕华,毛勇,张铁汉,曾君祉,王兰岚,陈正华.抗菌核病转基因油菜植株的获得.高技术通讯,1999,9(12):41-46.
    27.周乐聪.油菜品种资源对菌核病的抗性鉴定.中国油料(增刊),1994,69-72.
    28.周乐聪.植物病原菌核盘菌生防菌的筛选、诱变及分子改造.[博士论文].中国农业大学,2000.
    29. Adams, P. B. and Ayers, W. A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-899.
    30. Agrios, G. N. Plant Pathology. 4thed. San Diego: Academic Press, 1997. 252-253.
    31. Ahmed, A. H. M., and Tribe, H. T. Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans. Plant Pathol. 1977, 26: 75-78.
    32. Bateman, D.F., and Beer, S.V. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotiorum rolfsii. Phytopathology, 1965, 55:204-211.
    33. Bohar, G. A. potential success story in biological control: Coniothyrium minitans. [Hungarian] Novenyvedelem, 2004, 40(3): 121-124.
    34. Boland, G. J. and Hall, R. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol., 1994, 16: 93-108.
    35. Campbell, W. A. A new species of Coniothyrium parasitic on sclerotia. Mycologia, 1947, 39: 90-195.
    36. Cassells, A. C. and Walish, M. Screening for Sclerotinia Resistance in Helianthus tuberous L.(Jerusalen artichoke) varieties, lines and somaclones, in the field and in vitro. Plant Pathol 1995, 44: 428-437.
    
    37. Cessna, S. G., Sears V. E., Dickman M. B., and Low, P. S. Oxalic Acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000, 12: 191 - 2200.
    
    38. Cober, E. R., Rioux, S., Rajcan, I., Donaldson, P. A. and Simmonds, D. H. Partial resistance to white mold in a transgenic soybean line. Crop Sci, 2003, 43: 92-95.
    
    39. de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., Durand, A., Gerlagh, M., Jones, E. E., Luth, P., Oostra, J., Ravensberg, W. J., Renaud, R., Rinzema, A., Weber, F. J. and Whipps, J. M.The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol., 2001, 56: 58-68.
    
    40.Dhingra, O.D. and Sinclair, J.B. Basic Plant Pathology Methods, 1986, pp. 285-318. CRC Press, Boca Raton, FL.USA.
    
    41. Donaldson, P. A., Anderson, T, Lane, B. G, Davidson, A. L. and Simmonds, D. H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol. Mole. Plant Pathol, 2001,59: 297-307.
    
    42. Espeso, E. A., Tilburn J., Arst H. N., Jr, and Penalva, M. A. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993, 12: 3947-3956.
    
    43. Expert, J. M. and Digat, B. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can. J. Microbiol., 1995, 41: 685-691.
    
    44. Ferrar, P. H. and Walker, J. R. L. O-Dipenol oxidasse inhibition: an additional role of oxalic acid in the phytopathogenic arsenal of Sclerotium rolfsii. Physiol. Mol. Plant Pathol., 1993, 43: 15-442.
    
    45. Filippov, N.A. The present state and future outlook of biological control in USSR. Acta Entomological Fennia, 1989, 53: 11-18.
    
    46. Flaherty, J. E., Pirttila A. M., Bluhm B. H., and Woloshuk, C. P. PAC1, a pH-Regulatory Gene from Fusarium verticillioides.Appl. Environ. Microbiol. 2003, 69: 5222-5227.
    
    47. George N. Agrios. Plant pathology. 4th ed. San Diego: Academic Press, 1997, 252-253.
    
    48. Gerlagh, M., Goossen-van de Gejin, H. M., Hoogland, A. E and Verreijken, P. F. G Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans -timing of application, concentration and quantity of conidial suspension of the mycoparasite. Eur. J. Plant Pathol., 2003,109: 489-502
    49. Gerlagh, M., Gossen-Van De Geijn, H. M. and Fokkema, N. J. Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorium-infected crops. Phytopathology, 1999, 89: 141-147.
    
    50. Giczey, G., Kerenyi Z., Fulop, L and Hornok L. Expression of cmg1, an exo-6-l,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl. Environ. Microbiol, 2001, 67: 865-871
    
    51. Godoy, J., Steadman J. R. and Dickman M B. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. Plant Pathol., 1990, 37:179-191.
    
    52. Gossen, B. D., Rimmer, S. R. and Holley, J. D. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Dis., 2001, 85:1206-1209.
    
    53. Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O. and Lu G H.Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol., 2003,133:170-181.
    
    54. Huang, H. C. and Kokko, E. G Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. J. Phytopathol, 1988, 123:133-139.
    
    55. Huang, H.C., Bremer, E., Hynes, R. K. and Erickson R. S. Foliar application of fungal biocontrol agents for the control of white mold in dry bean caused by Sclerotinia sclerotiorum. Biol Control. 2000,18: 270-276.
    
    56. Huang, H. C. Control of Sclerotinia wilt of sunflower hyperparasite. Can. J. Plant Pathol., 1980, 2: 26-32
    
    57. Huang, H. C. and Kozub, G. C. Monocropping to sunflower and decline of sclerotinia wilt. Bot. Bull. Acad. Sinica 1991, 32: 163-170.
    
    58. Huang, H.C. and Hoes J.A. Penetration and infection of Sclerotinia sclerotiorum by Coniothyrium minitans. Can. J. Bot., 1976, 54: 406-410.
    
    59. Huang, H.C. and Kokko, E.G Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum.Can. J. Bot., 1987, 65: 2483-2489.
    
    60. Huang, H.C. and Dueck, J. Wilt of sunflower from infection by mycelial-germinating sclerotia of Sclerotinia sclerotiorum. Can. J. Plant Pathol.. 1980, 2: 47-52.
    
    61. Jones D.A., Gordon, A. H. and Bacon J.S. D. Co-operative action by endo- and exo-6-(l, 3)-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum. Biochem. J., 1974,140: 47-55.
    
    62. Keller N. P., Nesbitt C, Sarr B., Phillips T. D. and Burow G B. pH regulation of Sterigmatocystin and Aflatoxin Biosynthesis in Aspergillus spp. Phytopathology. 1997, 87: 643-648.
    
    63. Kesarwani, M., Azam, M., Natarajan, K., Mehta, A. and Datta, A. Oxalate decarboxylase from Collybia velutipes Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem., 2000, 275: 230-7238.
    
    64. Kim, H. S. and Diers, B. W. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci, 2000, 40: 55-61.
    
    65. Knudsen, G R., Eschen, D. J., Dandurand, L. M. and Bin, L. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harazianum. Plant Dis., 1991, 75: 466-470.
    
    66. Li, G Q., Huang, H. C. and Acharya, S. N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum by Coniothyrium minitans. Biocon. Sci. Technol., 2003a, 13: 495-505.
    
    67. Li, G Q., Huang, H. C, and Acharya, S. N. Sensitivity of Ulocladium atrum, Coniothyrium minitans and Sclerotinia sclerotiorum to benomyl and vinclozolin. Can. J. Bota. 2002, 80: 892-898.
    
    68. Li, G Q., Jiang, D. H., Zhu, B. and Rimmer, S. R. Oxalic acid production in hypovirulent and virulent strains of Sclerotinia sclerotiorum. In: Proceedings of International Symposium on Rapeseed Science (Liu Houli and Fu Tingdong eds), Science Press (New York). 2001.pp261-271.
    
    69. Li, G Q., Wei, S. J., Jiang, D.H., & Huang, H. C.Control of sclerotinia stem rot of canola by aerial application of coniothyium minitans. In: Young cS, Hughes KJd, Eds. Proceedings of Sclerotinia 2001-The XI International Sclerotinia Workshop, York 8~(th)-12~(th) July 2001, York, England: Central Science Laboratory, York, England. 2001, 97-98:147
    
    70. Li, GQ., Huang, H.C., Miao, H.J., Erickson, R.S., Jiang, D.H. and Xiao, Y.N. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur. J. Plant Pathol, 2006, 114 (in press).
    
    71. Lumsden, R. D. Histology and Physiology of pathogenesis in plant disease caused by Sclerotinia species. Phytopathology, 1979, 69(8): 890-896.
    
    72. Lumsden, R. D. Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology. 1968,59: 653-657.
    
    73. Machide, K., Trifonov, L S., Ayer, W. A., Lu, Z. X., Laroche, A., Huang, H. C, Cheng, K. J. and Zantige, J. L. 3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans. Phytochemistry, 2001, 58(1): 173-177.
    
    74. Marciano, P., Di Lenna, P., and Margo, P. oxalic acid, cell-wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 1983, 22: 339-345.
    75. Maxwell, D. P. and Lumsden, R. D. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 1970, 60: 1395-1398.
    76. McLaren, D, L., Huang, H. C. and Rimmer, S. R. Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Can. J. Plant Pathol., 1986, 8: 43-48.
    77. McLaren, D. L., Huang, H. C., and Rimmer, S. R. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis., 1996, 80:1373-1378
    78. McQuilken, M. P., Gemmell, J. and Whipps, J. M. Some nutrional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Biocon. Sci. Technol., 2002, 12: 443-454.
    79. McQuilken, M. P., Gemmell, J., Hill, R. A. and Whipps, J. M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol. Lett., 2003, 219(1): 27-31.
    80. McQuilken, M. P., Whipps, J. M., Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Eur J Plant Pathol. 1995, 101:101-110
    81. McQuilken, M.P., Budge, S. P., and Whipps, J. M. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycol. Res., 1997, 101: 11-17.
    82. McQuilken, M.P., Gemmell, J. and Hill, R.A. Antifungal metabolites produced by the mycoparasite Coniothyrium minitans. In: SAC Crop Sci. Rep. 1998, pp. 19-21.
    83. Merriman, P R. Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol. Biochem., 1976, 8: 385-389.
    84. Mestries E L, Gentzbitle D T, de Labrouhe P, Nicolas P, Vear F. Analyses of quantitative loci associated with resistance to Sclerotinia sclerotiorum in sunflower (Helianthus annuus L.) using molecular markers. Mol. Breed, 1998, 4: 15-226.
    85. Muthumeenakshi, S., Goldstein, A. L., Stewart, A. and Whipps J. M. Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. Mycol. Res., 2001, 105 (9): 1065-1074.
    86. Nathalie, P., Sandrine, C., Genevieve. B. G., Chistine, R. and Michel, F. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology, 2001, 147: 717-726.
    87. Noyes, R.D. and Hancock, J.G. Role of oxalic acid in the sclerotinia wilt of sunflower. Physiol. Plant Pathol.1981, 18: 123-132.
    88. O'Callaghan J., Stapleton P. C, and Dobson A. D. W. 2006. Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet. Biol.2006, 43 (in press), doi:10.1016/j.fgb.2005.11.005.
    
    89. Poussereau, N., Creton, S., Billon-Grand, G, Rascle, C, and Fevre, M. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology, 2001,147: 717-726.
    
    90. Purdy, L. H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69: 875-880
    
    91. Rauscher, M., Mendgen. K. and Deising, H. Extracellular proteases of the rust fungus Uromyces viciae-fabae. Exp. Mycol, 1995,19: 26-34.
    
    92. Riou, C, Freyssinet, G and Fevre, M. Production of cell wall degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol, 1991, 57: 1478-1484.
    
    93. Rollins, J. A. and Dickman, M. B. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog.Appl. Environ. Microbiol., 2001, 67: 75 - 81.
    
    94. Rollins, J. A. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant Microbe Interact., 2003,16: 785-795.
    
    95. Sandys-Winsch, C, Whipps, J. M., Gerlagh, M. and Kruse, M. World distribution of the sclerotial mycoparasite Coniothyrium minitans. Mycol. Res., 1993, 97(10): 1175-1178.
    
    96. Tribe, H. T. On the parasitism of Sclerotinia trifollorum by Coniothyrium minitans. Trans. Brit. Mycol. Soc, 1957,40: 489-499.
    
    97. Trutmann, P., Keane, P. J. and Merriman, P. R. Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Trans. Bri. Mycol. Soc, 1982, 78: 521-529.
    
    98. Tu, J. C. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect on sclerotial germination. Phytopathology, 1984, 109: 261-268.
    
    99. Venancio, S. A., George, L. G, James, E. S., James, R. S. and Kent, M. E. Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci., 2001, 41: 180-188.
    
    100. Whipps, J. M, Grewal, S. K. and Van der Goes, P. Interactions between Coniothyrium minitans and sclerotia. Mycol. Res., 1991, 95: 295-299.
    
    101. Whipps, J. M., Budge, S. P. and Mitchell, S. J. Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol. Res., 1993, 97(6): 697-700.
    
    102. Whipps, J. M. Growth of the collembolan Folsomia Candida on cultures of the mycroparasite Coniothyrium minitans and Sclerotinia sclerotiorum. Mycol. Res., 1993, 97(10): 1277-1280.
    
    103. Whipps, J. M. and Gerlagh, M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res., 1992, 96(11): 897-907.
    
    104. Whipps, J. M. and Davies, K. G Biocontrol of plant pathogens and nematodes by microorganisms. In: (Gurr, G and Wratten, S. D. eds) Measures of Success in Biological Control. Dordrecht: Kluwer Academic Publishers, 2000,231-269.
    
    105. Zhou, T. and Reeleder, R. D. Selection of Epicoccum purpurascens for tolerance to fungicides and improved biocontrol of Sclerotinia sclerotiorum. Can. J. Microbiol, 1990, 36: 754-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700