用户名: 密码: 验证码:
KDP晶体各向异性对加工表面粗糙度影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在惯性约束聚变固体激光驱动器、强激光武器及核武器等关键设备所需的众多光学元器件中,KDP晶体作为一种优质的非线性材料,被广泛的应用于激光和非线性光学领域。惯性约束核聚变等激光装置对KDP晶体光学元件表面粗糙度的基本要求是达到Rms≤5nm。但是,KDP晶体材料各向异性对加工的粗糙度质量有很大的影响。因此,研究超精密切削KDP晶体材料的各向异性对加工表面粗糙度的影响具有重要的意义。
     本文在分析KDP晶体压痕和刻划试验的基础上,认为对于KDP晶体这样的性材料也可以应用塑性的方法进行加工。接着,从切削表面形成的机理出发,对比了超精密切削与传统切削的区别,建立了新的超精密切削模型,得到了切削力与各主要参数的关系。然后,运用剪切变形比能最大理论,建立了KDP晶体的剪切角模型,结合KDP晶体的材料特性和剪切角模型得到了超精密加工KDP晶体的切削力的变化规律。
     运用机床振动学知识,建立了刀具和工件系统的动态切削模型,将切削力的波动转换为刀具和工件相对位移的波动。并根据车削表面形貌形成的知识,在考虑刀具半径和机床本身的波动的基础上,建立了超精密车削KDP晶体三维表面形貌的模型,得到了不同晶面的加工表面形貌,对仿真结果进行了分析和研究。
     最后,在哈尔滨工业大学的HCM-I型超精密车床上对KDP晶体进行了加工试验,对车削过程中的切削力信号进行了采集,在对切削力信号进行了FFT分析之后,得知车削时由材料各向异性引起的切削力的波动规律符合理论计算时由材料各向异性引起的切削力波动规律。并对工件表面进行了表面粗糙度检测,加工得到的表面粗糙度波动与仿真得到的表面形貌相一致。
On the high-energy multi-path Inertial Confinement Fusion solid laser driver, laser weapon and other advanced equipment, only the large-size non-linear electrical-optical crystal KDP with high accuracy can be used to make optical frequency multiplication transition and Pockel’s switch parts. The basic request of ICF laser driver to the KDP crystal surface roughness is Rms≤5nm. However, the anisotropy of KDP crystal has a great effect on the surface roughness. So, it is important to study the effect of KDP crystal anisotropy on the surface roughness.
     This paper analyzes the indention and dividing experiments and concludes KDP crystal can be machined with plastic method. A new ultra-precision cutting model is established using the mechanism of cutting surface formation. Then, according to KDP crystal characteristics, a theoretic model of shear angle of KDP ultra-precision machining is built with the principle of the maximum specific energy of shear deformation. We get the rule of cutting force variation in ultra-precision using the KDP characteristics and the cutting angle model above.
     A dynamic cutting system of cutting tool and work piece is established with machining tool vibration which changes cutting force vibration to relative displacement of cutting tool and work piece. A three-dimension surface roughness model is built according to the surface topography formation in the consideration of tool radius and machining tool vibration. Surface topography of different plane is gotten and the simulation results are analyzed.
     Finally, the cutting experiments of turning KDP crystal are done on the ultra-precision machining tool of HCM-I and the cutting force in the process is collected. After analyzing the cutting force with FFT, we finds the cutting force vibration caused by anisotropy is obvious and the With the FFT analysis to the cutting force signal at the turning and the regulation of vibration is accord to the cutting force of theoretical computing. The surface roughness vibration of experiments gotten is accord to the simulation results.
引文
1 范滇元, 贺贤土. 惯性约束聚变能源与激光驱动器. 大自然探索. 1999, 18(67):31~35
    2 杨力. 先进光学制造技术. 科学出版社. 2001:239~241
    3 叶青. 法国惯性约束聚变计划概述. 激光与光电子学进展. 2000, 415:4~6
    4 Baruch A. Fuchs. Fine diamond turning of KDP crystals. 1986, 25:1733~1735
    5 Kozlowski, Mark R etc. Influence of diamond turning and surface cleaning processes on the degradation of KDP crystal surface. Proceedings of SPIE-the International Society for Optical Engineering. 1991, 1561:59~69
    6 Namba Yoshiharu, Katagiri Masanori, Nakatsuka Masahiro. Single point diamond turning of KDP inorganic optical crystals for laser fusion. Journal of the Japan Society Precision Engineering. 1998, 64(10):1487~1491
    7 Lahaye Philippe, Chomont Christian, Dumont Pierre et al. Using a design of experiment method to improve KDP crystal machining process. Proceedings of SPIE-the International Society for Optical Engineering. 1998,3492:814~820
    8 Qiao Xu, Jian Wng, Wei Li, Xun Zeng, Shouyong Jing. Defects of KDP Crystals Fabricated by Single Point Diamond Turning. SPIE. 2001, Vol.3862:236~239
    9 Prokhorov I V, Kordonski W I, Gleb L K, Gorodkin G R, Levin M L. New High Precision Magetorheological Instrument-Based Method of Polishing Optics. OSA OF&T Workshop Digest. 1992, 24:134~136
    10 Arrasmith, S.R, Kozhinova, I.A, Gregg, L.L, Shory, A.B, Romanofsky, H.J, Jacobs, S.D, Golini, D, Kordonski, W.I, Hogan, S, Dumas, P. Details of the polishing spot in magnetorheological finishing (MRF). Proceedings of SPIE - The International Society for Optical Engineering. 1999, Vol.3782:92~100
    11 Bifano, T.G, Dow, T.A, Scattergood, R.O. Ductile-regime grinding: A new technology for machining brittle materials. ASME. 1998, Vol.78:113~120
    12 Namba Yoshiharu, Katagiri Masanori.Ultraprecision grinding of potassium dihydrogen phosphate crystals for getting optical surface.Proceeding of SPIE the International Society for Optical Engineering. 1999, Vol.3578 :692-698
    13 Blackley W S, Scattergood R O. Crystal orientation dependence of machining damage: a stress model. Journal of the America Ceramic Society. 1990,73(10):3113~3115
    14 赵奕, 周明, 董申, 李旦. 性材料塑性域超精密加工的研究现状. 高技术通讯. 1999, 4:59~62
    15 Nakasuji T, Kedera S, Hara S. Diamond turning of brittle materials for optical component. Annals of the CIRP. 1990, 39(1):89~92
    16 周明, 董申, 袁哲俊. 材料的微观性能对纳米加工表面质量的影响. 仪器仪表学报. 1996, 17(2):396~398
    17 周明, 李荣彬, 袁哲俊. 工件材料的各向异性对超精密切削变形及已加工表面粗糙度的影响. 机械工程学报. 1997, 33(6):38~43
    18 史国权. 金刚石超精密车削光学晶体材料的研究. 吉林工业大学博士论文, 1996:12~25
    19 赵奕. 性材料超精密车削塑转变及影响表面质量因素的研究. 哈尔滨工业大学博士论文, 1999:23~35
    20 T Shibata, S Fuji, E Makino, M Ikeda. Ductile-regime turning mechanism of single-crystal silicon. 1996,18:129~137
    21 Jiwang Yan, Katsuo Syoji, Tsunemoto Kuriyagawa, Hirofumi Suzuki. Ductile regime turning at large tool feed. Journal of Materials Processing Technology. 2002, 121:363~372
    22 Jiwang Yan, Jun’ichi Tamaki, Katsuo Syoji, Tsunemoto Kuriyagawa. Nanometric cutting of single crystal silicon for large-diameter aspheric optical element. Proceedings of the 5th International Conference on Frontiers of Design and Manufacturing. 2002, 25~28
    23 W.B. Lee, C.F. Cheung. A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. International Journal of Mechanical Sciences. 2001, 43:961~991
    24 王景贺, 陈明君, 董申, 张龙江. KDP晶体单点金刚石切削塑转变机理的研究. 光电工程. 2005, 32(7):67~70
    25 陈明君, 王景贺, 原大勇, 罗熙淳, 李旦. KDP晶体塑性域超精密切削加工过程仿真. 光电工程. 2005, 32(5):69~72
    26 张新洲. KDP晶体各向异性对超精密加工的影响理论基础与试验研究. 哈尔滨工业大学硕士论文, 2005:10~30
    27 赵奕, 董申, 周明, 李兆光. 性材料超精密车削中-塑性转变的研究. 工具技术. 1998,32(11):6~9
    28 张幼桢主编. 金属切削理论, 航空工业出版社, 1988:123~135
    29 Liang, Y., Moronuki, N., Furukawa, Y. "Calculations of the Effect of Material Anisotropy on Microcutting Processes". Precision Engineering, April 1994 Vol. 16(2): 132-138.
    30 Furukawa, Y., Nobuyuki, M., Effect of Material Properties on Ultra-precision Cutting Processes, Annals of the CIRP,1988, 37:113
    31 Hyungyil Lee, Jin Haeng Lee, George M. Pharr. A Numerical Approach to Spherical Indentation Techniques for Material Property Evaluation. Journal of the Mechanics and Physics of solids. 2005, 53:2037-2069
    32 B Taljat, T Zacharia. New Analytical Procedure to Determine Stress-Strain Curves From Spherical Indentation Data. Solids Structures. 1998, 35:441-4426
    33 Moronuki, N.,Liang, Y., Furukawa, Y., Experiments on the Effect of Material Properties on Micro-cutting Processes, Precision Engineering, 1994,16:124~126
    34 Nakasuji, T, et. al. Diamond Turning of Brittle Materials for Optical Components, Annals of the CIRP, 1990,39:89
    35 Yuan, Z. J., Lee, W, B., Yao, Y. X., Zhou, M. Effect of Crystallographic Orietation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal, Annals of the CIRP, 1994, Vol.43:3~5
    36 Lee, W.B., Zhou, M. An Theoretical Analysis of the Effect of Crystallographic Orientation on Chip Formation in Micro-machining. J. Mach. Tools Manufact., 1993, Vol.33:439-447
    37 Lee, W, B., C. F. Cheung, S. To. A Micro-plasticity Analysis of Micro-cutting Force Variation in Ultra-precision Diamond Turning, ASME, 2002, Vol.124:170-177
    38 Lee, W, B., C. F. Cheung, S. To. A mesoplasticitiy analysis of cutting friction in ultra-precision machining. Journal of Materials Processing Technology, 2003(140):292~297
    39 Yu, J. Y., Shi, G. Q., Study on the Fan-shape Distribution Characteristic of Surface Roughness in Diamond-Turning, SPIE, 1996, 2862:223-225
    40 Abouelatta, O.B. Surface Roughness Prediction Based on Cutting Parameters and Tool Vibrations in Turning Operations, Journal of Materials Processing Technology, 2001, 118(1):269~277
    41 罗熙淳. 基于分子动力学的纳米表面形成机理研究. 哈尔滨工业大学硕士论文, 2002:10~15
    42 Dong-Sik Kim, In-Cheol Chang, Seung-Woo Kim, Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces [J] Precision Engineer, 2002, (26):168-174
    43 Takasu S, Masuda M, Nishiguchi T. Influence of Study Vibration with Small Amplitude upon Surface Roughness in Diamond Machining, Annals of the CIRP, 1985, 34(1):463~467
    44 X. Liu, R.E. Devor, S.G. Kapoor. The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science. Transactions of the ASME, 2004, Vol.(126):666~678
    45 C.L. Chao, K.J. Ma, D.S. Liu, C.Y. Bai, T.L. Sky. Ductile behavior in single-point diamond-turning of single-crystal silicon. Jourmal of Materials Processing Technology, 2002, Vol.(127):187~190
    46 F.Z. Fang, H. Wu, Y.C. Liu. Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Machine Tools and Manufacture, 2005, Vol.(45):1681~1686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700