用户名: 密码: 验证码:
层状岩体变形试验的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状岩体是由多种不同属性、不同厚度岩层按某种方式组合而成的天然复杂岩体,其变形特性明显不同于单一岩体,故其变形参数就不单取决于某一层岩体的变形参数,而是与各岩层的厚度、岩层倾角、相互之间的组合方式等因素有关的。而工程中普遍采用承压板法变形试验来研究岩体的变形参数,存在的问题主要是这种方法的试验结果大都是复杂岩体的等效变形模量,不能够准确反映出各个岩层对试验结果的影响以及每个单层的变形参数。因此,正确分析层状岩体对承压板试验结果的影响具有十分重要的意义。
     本文以层状岩体为研究对象,主要开展了以下的研究工作:
     (1)对层状岩体进行合理概化,介绍了水平层状岩体在垂直方向荷载作用下,各层岩体位移与变形参数的理论解。
     (2)对现场承压板变形试验包括柔性承压板、刚性承压板以及中心孔试验的试验原理、试验方法与技术进行了较为系统的总结,并阐述了试验中存在的相关问题。
     (3)采用ANSYS有限元软件,对含有软弱夹层的倾斜层状岩体进行数值模拟,主要研究了软弱夹层与试验点间的距离和软弱夹层的倾角对层状岩体变形模量测试结果的影响,并得出了一些规律性的认识。
     (4)在软硬相间层状岩体试验洞条件下,对承压板试验进行数值模拟,研究了软硬相间岩体的间距和倾角对承压板试验结果的影响。
     (4)结合ANSYS软件的优化功能和位移反分析的理论对水平和倾斜层状岩体各个岩层的变形模量进行了反演,并通过算例分析得出了较为合理的结果,说明利用ANSY优化程序反演层状岩体变形模量的方法是可行的,从而解决了承压板法变形试验只能测得岩体等效变形模量的缺点。
Layered rock mass is natural complex rock mass with different attributes and thickness which were assembled in some way, so its characteristics are very different from the uniform rock. Its deformation parameters is not only decided by each layered rock mass deformation parameters, but also decided by the thickness of each rock layer, the rock layer inclination angle and combination way of layers. In engineering practices, bearing plate test is widely applied to study rock mass deformation parameters. However, this method has a main problem that the resulted deformation modulus is the equivalent modulus which can't accurately reflect the influence of each rock layer to test result and each single layer's deformation. Therefore, it is extremely vital significant to analyses the influence of layered rock mass on the bearing plate test.
     This paper takes layered rock mass as object of study, and the following major research work has been done:
     (1) Through the layered rock mass was carried on reasonably melts, displacement and deformation parameter of Level layered rock mass theory solution was introduced under vertical load.
     (2) The test principle, the method and technology of bearing plate tests containing flexible bearing plate test, rigid bearing plate test and plate test with a central hole had been systematically summarized.
     (3) Numerical simulations for incline layered rock masses were carried out by ANSYS software. The influences of distance from test point to the first layer and the inclination angle of layer on the deformation modulus of layered rock masses were studied. Some regular conclusions had been obtained.
     (4) For soft and hard alternating layered rock mass, numerical simulations of bearing plate test were carried out. The influences of the space between soft and hard rock mass and the inclination angle on the bearing plate test result were studied.
     (5) With optimization function of ANSYS software and theory of displacement back analysis, each rock layer's deformation modulus of level and inclined layered rock mass were back analysed, and obtained a more reasonable result through the example analysis. It is shown that the method of using the ANSY optimization procedure to predict the deformation modulus of the layered rock mass is feasible. Thus the shortcoming of the bearing plate test which is only able to obtain the rock mass equivalent deformation modulus can be solved.
引文
[1]刘佑荣,唐辉明.岩体力学.武汉:中国地质大学出版社,1999.
    [2]沈明荣.岩体力学.上海:同济大学出版社,1999.
    [3]凌贤长.岩体力学.哈尔滨:哈尔滨工业大学出版社,2002.
    [4]李启昆.构造地质学.北京:冶金工业出版社,1992.
    [5]陶振宇,潘别桐.岩石力学原理与方法.武汉:中国地质大学出版社,1991.
    [6]Oda M A.Method for evaluating the representive elementary volume based on joint survey of rock mass.Canadian Geotechnical Journal,1998,25(3):281-287.
    [7]Lashkaripour G R,Passaris E K S.Development of a database system on shale characteristics.In:Olivie R.Rodrigues L F,Coelho A G ed.Proceeding of 7th international IAEG Congress.New York:Pergamon 1994,6:4477-4482.
    [8]Kim K,Gao H.Probabilistic approaches to estimating variation in the mechanical properties of rock masses.Int.J.Rock Mech.Min.Sci.&Geomech.Abstr,1995,32(2):111-120.
    [9]Bieniawski Z T.Rock mass classification in rock engineering.In:Proceedings Symposium on Exploration for Rock Engineering,1976,97-106.
    [10]Serafin J L,Pereira J P.Consideration of the geomechanics classification of Bieniawski.In:Proc.Int.Symp.Eng.Geol.Underground Construction.Lisbon,Portugal,1983,1(Ⅱ):33-42.
    [11]Barton N.The influence of joint properties in modeling jointed rock masses.In:Proc.8th Int.Rock Mech.Congress.Tokyo,1995,3-4.
    [12]谭文辉等.岩体宏观力学参数取值的GSI和广义Hoek-Brown法.有色金属(矿山部分),2002,7:16-18.
    [13]Singh B.Continuum characterization of jointed rock masses.Int.J.Rock Mech.Min.Sci.Geomech.Abstr,1973,10:311-335.
    [14]Gerrard C M.Equivalent elastic moduli of a rock mass consisting of orthorhombic layers.International Journal of Rock Mechanics and Mining Sciences,1982,19(1):9-14.
    [15]B.A.Chappell.Predicted and measured rock mass moduli.Mining Science and Technology,1987,6(1):89-104.
    [16]朱维申,王平.节理岩体的等效连续模型与工程应用.岩土工程学报,1992,14(2):1-11.
    [17]朱浮生,王泳嘉.层状岩体等效数值分析.东北工学院学报,1992,13(6):533-539.
    [18]耿大新,杨林德.层状岩体的力学特性及数值分析.地下空间,2003,23(4):380-387.
    [19]王启耀,蒋臻蔚.层状岩体的力学特性和数值模拟方法研究.公路交通科技,2005,22(9):111-114.
    [20]周维垣 高等岩石力学.北京:水利电力出版社,1990.
    [21]杨旭,王国军.基于损伤力学的岩体宏观力学参数研究.勘察科学技术,2003,3:14-17.
    [22]周火明,盛谦.三峡永久船闸边坡岩体宏观力学参数的尺寸效应研究.岩石力学与工程学报,2001,20(5):661-664.
    [23]盛谦.三峡节理岩体力学参数性质的数值模拟试验.长江科学院院报,2001,18(1):35-37.
    [24]周火明,盛谦等.层状复合岩体变形试验尺寸效应的数值模拟.岩石力学与工程学报,2004,23(2):289-292.
    [25]王良奎.节理岩体变形参数数值模拟试验研究.广东土木与建筑,2006,(7).
    [26]Kavanagh K T,Clough R W.Finite element application in the characterization of elastic solids[J].Int.J.Solids Structures,1972,7:11-23.
    [27]Kirsten H.A.D;Determination of rock mass elastic module by back analysis of deformation measurements.Proceedings of Symposium on Exploration for Rock Engineerings,1976:1154-1160.
    [28]Arai R.An inverse problem approach to the prediction of Multi-dimensional consolidation behavior.Soil and Foundations,1984,24(1):95-108.
    [29]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnels. Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [30]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用.地下工程,1981(2):20-24.
    [31]吴凯华.隧洞围岩原始应力与弹性常数反分析[J].土木工程学报,1985(2):28-40.
    [32]郑颖人,张德微,高效伟.弹塑性问题反演计算的边界元法.见:中国土木学会第三届年会论文集.上海:同济大学出版社,1986,377-386.
    [33]杨林德.初始地应力及E值反演计算的边界单元法[J].第一届全国边界元会议论文集,北京:中国岩石力学与工程学会,1985,37-49.
    [34]吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998.
    [35]邓建辉,丰定祥.多介质边坡弹性模具位移反分析模型与优化算法,岩土工程学报,1997,19(3):22-27.
    [36]杨喜中,马才学.多种介质物理力学参数的同时反分析.地壳形变与地震,1998,18(1):14-21.
    [37]吉林,赵启林,冯兆祥等.软弱夹层与结构面的力学参数反演.水利学报,2003,(11):107-111.
    [38]李迪,王昌明.现场承压板变形试验的分层弹模计算.长江科学院院报,1991,(6):37-45.
    [39]李迪,王昌明.承压板法变形试验表面位移的反分析.人民长江,1994,(4):41-48.
    [40]李迪,王昌明.刚性承压板法变形试验的分层弹模计算.长江科学院院报,2003,20(2):23-29.
    [41]冯夏庭,张治强等.位移反分析的进化神经网络方法研究.岩石力学与工程学报,1999,18(5):497-502.
    [42]刁心宏,冯夏庭等.人工神经网络方法辨识岩体力学参数的可辨识性及其稳定性探讨.矿冶,2001,10(3):11-14.
    [43]刁心宏,王泳嘉,冯夏庭,陈廷伟.用人工神经网络方法辨识岩体力学参数.东北大学学报(自然科学版),2002,01:62-65.
    [44]金长宇等.神经网络在岩体力学参数和地应力场反演中的应用,岩土力学,2006,27(8):1263-1266.
    [45]高玮,冯夏庭,郑颖人.地下工程围岩参数反演的仿生算法及其工程应用研究.岩石力学与工程学报,2002,S1:237-242.
    [46]向衍,苏怀智.基于遗传算法的物理力学参数反演.长江科学院院报,2003,20(6):55-58.
    [47]柴贺军,刘浩吾,王忠.改进的进化遗传算法在软弱结构面力学参数选取中的应用.成都理工学院学报,2001,28(4):421-424.
    [48]邓勇.边坡岩体力学参数反分析遗传-神经网络算法.地下空间与工程学报,2007,3(4):751-757.
    [49]郭大智,冯德成.层状弹性体系力学.哈尔滨:哈尔滨工业大学出版社,2001.
    [50]徐芝纶.弹性力学.北京:人民教育出版社,1990.
    [51]中华人民共和国国家标准,工程岩体测试方法标准(GB/T50266—1999).北京:中国计划出版社,1999,27-33.
    [52]中华人民共和国国家标准,水利水电工程岩石试验规程(SL264—2001).北京:中国水利水电出版社,2001,53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700