用户名: 密码: 验证码:
基于混沌理论的岩石声发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声发射技术作为对岩土工程进行安全监测的有效手段之一,近年来越来越得到广泛应用,然而在声发射技术的实际监测预报应用中却还存在一些问题。究其原因是岩体系统是高度非线性复杂大系统,并处于动态不可逆演化之中,人们尚未完全掌握岩石破坏的特征。要对岩石(体)的力学行为进行预测和控制,应该借助当代非线性科学,建立适合于岩石力学与工程特点的岩石非线性静力和动力系统理论。而混沌是非线性数学、力学研究的一个热点,它也是非线性系统的根本特征之一。岩体系统中存在大量的非稳定数据和离散的非均匀数据,如位移、声发射、地的时序记录数据等,均有可能用混沌模型予以很好的描述,并能揭示出更深刻的岩体力学机制与规律。基于以上思想,本文主要研究工作为:
     ①本文采用AG-I液压伺服材料试验机以及PCI-2声发射仪等仪器设备,对钙质泥岩、砂岩、细砂岩、高丽山砂岩四种不同的岩石,进行单轴压缩破坏试验和声发射试验,运用声发射仪器监测岩石损伤破坏过程中的声发射现象,记录下声发射事件数时序、声发射能量时序、位移(应变)时序及应力时序,运用非线性动力学原理建立岩石在失稳破坏过程中的非线性动力学数学模型。
     ②对声发射事件数时序,进行了小波降噪处理,并进行了降噪后的混沌特征量的计算,与原始数据序列的结果做了对比,研究噪声对计算结果的影响。
     ③针对试验记录的声发射事件数时序,分别计算了声发射时序列的嵌入维数和延迟时,延迟时的选取采用互信息量法,嵌入维数的选取采用Cao方法和饱和关联维数法。
     ④计算了声发射时序列的特征量,分维数和Lyapunov指数(主要是最大Lyapunov指数)。分维数的不同定义和估计有不同结果,关联维数是最常用的分维数估计值,因此本文只采用了G-P关联积分法计算关联维数。对于最大Lyapunov指数的计算,则采用了小数据量法。从定性、定量两个方面对岩石声发射时序列的混沌性质进行了判别,采用的定性方法为:主分量分析(PCA)方法;采用的定量分析方法为:饱和关联维数法和最大Lyapunov指数法。
     ⑤对岩石破坏声发射信号前兆特征进行了探讨,对应用声发射基本参数判断岩石破坏进行了讨论,运用混沌分形理论建立声发射时序列分维模型,通过讨论岩石破坏各阶段分形维数的变化,对岩石破坏的声发射前兆特征进行研究,寻找岩石破坏的判据。
Recently AE technology widely used is one of the effective means of the safety monitoring to geotechnical engineering. However some problems are met when AE technique is applied to monitoring and forecasting. The reason is that rock system is a highly nonlinear complex system during a dynamic and irreversible evolution, and the characteristics of rock damage are not fully understood. In order to predict the mechanical behavior of rock, the rock nonlinear static and dynamic systems should be established by using nonlinear sciences, which are suitable for describing the characteristics of rock mechanics and engineering. Chaos is suitable for researching non-linear mathematics and mechanics, which is also one of the fundamental characteristics of non-linear system. There is a large number of non-stable dispersion of data and non-uniform data in rock system, such as displacement, AE series, seismic data and other records of time series, which reveal failure mechanism of rock by using chaos.
     The main points in this thesis are summarized as follows:
     ①Uniaxial compression damage tests and Acoustic emission test of Calcareous mudstone, sandstone, fine sandstone, Korea sandstone are carried with AG-I Full-digitally Servo-controlled testing machine and PCI-2 emissions equipment. Acoustic emission events time series, AE energy time series, displacement (strain) and stress time series are recorded in the process of rock test. On the basis of the theory of nonlinear kinetic principle, nonlinear dynamics model of rock failure process are discussed.
     ②Acoustic emission events time series is treated by using the wavelet noise reduction method. The chaotic characteristics are determined after the noise reduction. Comparing between the noise reduction data and the original data is done. The effect of noise on the chaotic characteristics was studied.
     ③AE time series embedding dimension and the delay time are calculated from the recorded acoustic emission time series. Delay time was chosen by using mutual information method. Embedding dimension was obtained by using Cao method and saturation correlation dimension law.
     ④Chaotic characteristics, i.e. fractal dimension and Lyapunov exponents (mainly the largest Lyapunov exponents), were given out. Fractal dimension from different definitions and estimates have different results, the correlation dimension is the most commonly used estimate of fractal dimension. The G-P saturation correlation dimension method is applied to compute the correlation dimension. The small data set method is applied to calculate the largest Lyapunov exponents of the time series. The chaotic feature of the rock AE time series is determined from the qualitative and quantitative aspects. The qualitative method is PCA (Principal Components Analysis) method, and the quantitative analysis methods are based on saturated correlation dimension law and the largest Lyapunov exponents method.
     ⑤The application of characteristics of the rock failure AE signal and the AE basic parameters to analyze the rock damage are discussed. The fractal model of acoustic emission time series is established based on the chaos fractal theory. By means of the changes of fractal dimension and the AE characteristics of rock damage during the various stages of rock damage, the criterion of rock damage is found.
引文
[1]叶正伟.长江新滩滑坡的历史分析、趋势预测与启示[J].灾害学,2000,15(3):30-34.
    [2]中国三峡图片网http://www.photosanxia.com/view.asp?id=4612.
    [3]天津北方网http://news.enorth.com.cn/system/2007/11/23/002383431.shtml.
    [4]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [5]朱旺喜.资源枯竭城市灾害形成机理与控制战略研讨[M].北京:地质出版社,2003,11.
    [6]秦四清,李造鼎,张倬元等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [7]勝山邦久.声发射(AE)技术的应用[M].冯夏庭译.北京:冶金工业出版社,1996.
    [8]李俊平.声发射技术在岩土工程中的应用[J].岩石力学与工程学报,1995,14(4):371-376.
    [9] Boyce G M. A study of the acoustic emission response of various rock types[D]. Mater thesis, Drexel: Drexel University, 1991.
    [10] D J Holcomb. General theory of the Kaiser effect[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 929-935.
    [11] S J D Cox, P G Meredith. Microcrack formation and material softening in rock measured by monitoring acoustic emissions[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 11-24.
    [12] P K Kaiser, C A Tang. Numerical simulation of damage accumulation and seismic energy release during brittle rock failure-partⅡ: rib pillar collapse[J]. International Journal of Rock Mechanics and Mining Sciences,1998, 35(2): 123-134.
    [13] Seto M, Utagawa M, K Katsuyama. The estimation of pre-stress from AE in cyclic loading of pre-stressed rock[J]. Progress in Acoustic Emission, 1992, 7: 159-166.
    [14]李典文.利用声发射技术预报岩体破坏的若干问题[J].工业安全与环保,1984,01:37-39.
    [15]陈颙.不同应力途径三轴压缩下岩石的声发射[J].地学报,1981,3(1):41-48.
    [16]谢和平.分形-岩石力学导论[J].北京:科学出版社,1997.
    [17]谢和平,W.G.Pariseau.岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37.
    [18]秦四清,李造鼎.岩石声发射事件在空上的分形分布研究[J].应用声学,1992,11(4):19-21.
    [19]秦四清.岩石断裂过程的声发射试验研究[J].地质灾害与环境保护,1994,5(3):48-55.
    [20]曾文正,马瑾,刘力强.岩石破裂扩展过程中的声发射b值动态特征及意义[J].地地质,1995, 17(1): 7-11.
    [21] C A Tang, Z H Chen, X H Xu, C Li. A theoretical model for Kaiser effect in rock[J]. Pure and Applied Geophysics, 1997, 150(2): 203-215.
    [22]吴刚,赵洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):83-85.
    [23]王恩元,何学秋,刘贞堂.煤岩破裂声发射实验研究及R/S统计分析[J].煤炭学报, 1999,24(3): 270-273.
    [24]周小平,张永兴.大厂铜矿细脉带岩石结构面直剪实验研究中声发射特性研究[J].岩石力学与工程学报,2002,21(5):724-727.
    [25]赵兴东,唐春安,李元辉等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报, 2006, 25(增2):3673-3678.
    [26]黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社,2005.
    [27] Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atomic Energy Society, 1963, 20: 127-156.
    [28] Ruell D, Takens F. On the nature of turbulence[J]. Communication in Mathematical Physics, 1971, 20(1): 167-192.
    [29] Li T Y, Yorke J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82: 365-389.
    [30] May R. Simple mathematical models with very complicated dynamics[J]. Nature, 1976,261: 73-85.
    [31]吕金虎,陆君安,陈士华.混沌时序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [32]蒋斌松.矿山岩体变形的混沌行为及其预测研究[J].博士学位论文,北京:北京科技大学, 2004.
    [33] Packara N H. Geometry from a time series[J]. Physical Review Letters, 1980,45: 712-723.
    [34] Taken F. Detecting strange attractor in turbulence[J]. Lecture Notes in Mathematics, 1981,898: 336-354.
    [35] Grassberger P. Generalized dimension of strange attractor[J]. Physics Letters, 1983,97(6): 227-230.
    [36] Grassberger P, Procacia A. Dimensions and entropies of strange attractors from a fluctuating dynamics approach[J]. Physica D, 1984, 13(1-2): 34-54.
    [37] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986,33(2): 1134-1140.
    [38] Faramer J D. Predicating chaotic time series[J]. Physical Review Letters, 1987,59(8): 387-405.
    [39] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physical D: Nonlinear Phenomena, 1985,16: 285-317.
    [40] Matthew B, Rwggie Brown. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992,45(6):3403-3411.
    [41] Michael T. Rosenstein, James J. Collins, Carlo J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1-2): 117-134.
    [42] Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A, 1994,185(1):77-87.
    [43] Kugiumtzis D. State space reconstruction parameter in the analysis of chotix time series-the role of the time window length[J]. Physica D,1996, 95:13-28.
    [44] H S Kim, R Eykholt, J D Salas. Nonlinear dynamics, delay times, and embedding windows[J]. Phydica D, 127:48-60.
    [45] K. P. Harikrishnan, R. Misra, G. Ambika and A. K. Kembhavi. A non subjective approach to the GP algorithm for analyzing noisy time series[J]. Physica D 2006,215: 137–145
    [46]朱照宣.关于时序列分析[J].力学与实践, 1989,11(1):22-27.
    [47]秦四清,张倬元,黄润秋.滑坡灾害预报的非线性动力学方法[J].水文地质工程地质, 1995 (5): 1-5.
    [48]李术才,王渭明,王拉才.非线性时序分析模型在地下工程位移预报中的应用[J].岩土工程学报, 1997,19(4): 15-20.
    [49]谭云亮,王泳嘉,朱浮声.矿山岩层运动非线性动力学反演预测方法[J].岩土工程学报,1998, 20(4):16-19.
    [50]陈益峰,吕金虎,周创兵.基于Lyapunov指数改进算法的边坡位移预测[J].岩石力学与工程学报, 2001,20(5): 671-675.
    [51]李强.地前兆混沌时序列多尺度分维异常识别研究[J].防灾减灾工程学报, 2007, 27(2): 211-216.
    [52] B Sivakumar. Chaos theory in hydrology: important issues and interpretations[J]. Journal of Hydrology, 2000,(227): 1-20.
    [53]李建平.小波分析与信号处理[M].重庆:重庆出版社,1997,12.
    [54]郑治真,沈萍等.小波变换及其MATLAB工具的应用[M].北京:地出版社,2001,10.
    [55]飞思科技产品研发中心.小波分析理论与MATLAB 7实现[M].北京:电子工业出版社, 2005,3.
    [56]金解放,赵奎,王晓军等.岩石声发射信号处理小波基选择的研究[J].矿业研究与开发, 2007, 27(2): 12-15.
    [57] Ronald R Coifman, Mladen Victor Wickerhauser. Entropy-Based Algorithms for Best Basis Selection[J]. IEEE TRANSACTIONS INFORMATION THEORY, 1992, 38(2): 713-718.
    [58]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报, 1996,18(1):98-100.
    [59]安镇文.分形与混沌理论在地学中的应用与探讨[J].地球物理学进展, 1994,9(2):84-90.
    [60]李东升,陆远忠.混沌理论与地预报研究探讨[J].地, 1993,(6):29-34.
    [61]刘兴华,郑颖人.岩爆活动的分形特性及其动力学系统模型的重建[J].第三届全国青年岩石力学与工程学术会议论文集,成都:西南交通大学出版社,1995.
    [62]孙海涛,丁德馨等.基于非线性混沌理论的岩爆预测方法展望[J].西部探矿工程, 2005, (11): 9-11.
    [63]苏忖安,盛松涛,陈红萍.边坡位移预测的混沌时序列分析方法应用研究[J].中南公路工程, 2006, 31(6):5-7.
    [64]施泽进,李忠全,应丹琳.序列数据关联维的计算及意义[J].成都理工学院学报,1996,23(2): 88-92.
    [65]尹光志,鲜学福,许江,王宏图.岩石细观断裂过程的分叉与混沌特征[J].重庆大学学报(自然科学版),2000,23(2):56-59.
    [66]高雷阜.煤与瓦斯突出的混沌动力系统演化规律研究[D].博士学位论文,辽宁:辽宁工程技术大学,2006.
    [67]陈颙 .声发射技术在岩石力学研究中的应用[J].地球物理学报.1977, 20(4):312-322.
    [68]唐春安.岩石声发射规律数值模拟初探[J].岩石力学与工程学报.1997, 16(4):368-374.
    [69] DiSP USER'S MANUAL.PHYSICAL ACCOUSTICS CORPORATION
    [70]陈铿,韩伯棠.混沌时序列分析中的相空重构技术综述[J].计算机学,2005,32(4):67-70.
    [71] Liangyue Cao. Practical method for determining the minimum embedding dimension of a scalar time series [J].Physica D: Nonlinear Phenomena. 1997, 110: 43-50.
    [72]张雨,任成龙.确定重构相空维数的方法[J].国防工业大学学报.2005, 27(06):101-105.
    [73] Zhu Chuangzhen, An Zhenwen, Wang Linying, Yao Donghua. Fractal features of earthquakes and its significance in earthquake prediction[J].JOURNAL OF SEISMOLOGICAL RESEARCH, 1991,14(1):73-86.
    [74] B.Sivakumar. Chaos theory in hydrology: important issues and interpretations [J]. Journal of Hydrology, 2000, 227:1-20.
    [75]韩敏.混沌时序列预测理论与方法[M].北京:中国水利水电出版社,2007.
    [76]尹贤刚,李庶林,唐海燕.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报, 2005, 24 (19):3512-3516.
    [77]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [78]王宁,韩志型等.评价岩体稳定性的声发射相对强弱指标[J].岩土工程学报, 2005, 27(2): 190 -192.
    [79]唐绍辉,吴壮军.岩石声发射活动规律的理论与试验研究[J].矿业研究与开发, 2000, 20(1): 16 -18.
    [80]谭云亮.矿山岩层运动非线性动力学特征研究[D].博士学位论文,沈阳:东北大学,1996.
    [81]武安绪,李平安,鲁亚军等.基于支持向量机的多维地序列建模[J].东北地研究, 2006,22(4):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700