用户名: 密码: 验证码:
BFRP加固协调受扭边梁和偏心受压柱试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玄武岩连续纤维(CBF)是以天然玄武岩矿石为原料制作而成的纤维,具有高强度、低密度、低导热率、低吸湿率、良好的介电性、对腐蚀介质的化学稳定性和市场价格低廉等特点。
     为了解玄武岩纤维增强复合材料(BFRP)在整体结构中的加固效果和作用,对一个已经丧失承载力的无粘结预应力混凝土平板-异形整体结构模型中的协调受扭边梁和偏心受压一字柱进行了加固,通过对加固后的整体结构试件进行十六点竖向静力加载试验,研究分析了被加固构件的受力性能。结果表明,BFRP较好地发挥了作用,边梁的旧扭转裂缝受到显著的约束,新扭转裂缝出现时间大大延迟,相对原试验结果,构件的刚度得到了明显恢复;由于BFRP与构件的共同工作情况良好,未发生剥离破坏,分担了钢筋的受力,故加固构件还具有较大的承载潜力;比较显示小间距BFRP箍加固方式的效果要好一些,BFRP粘贴层数的增加将导致其强度发挥效率降低。
     另外,在试验研究的基础上,本文还利用考虑混凝土软化效应的斜压场空间桁架理论对边梁受扭全过程进行了分析,采用C语言编制程序,计算出各个加载阶段的扭矩和扭转角,通过与试验实测值对比分析发现,利用该理论分析所得的结果与实际结果吻合较好。
     最后还指出了本文研究的不足,并对后续研究工作进行了展望。
Continuous Basalt Fiber (CBF) is made by crude basalt ore. The fiber has these characteristics, such as high intensity, low density, low thermal conductivity, low moisture rate, nicer dielectric properties, chemical stability to corrosion medium and low price.
     In order to study the effect and action of Basalt Continuous Fiber Reinforced Polymer (BFRP) strengthening in the integral structure, the compatibility torional spandrel beams and eccentricity compression“一”shaped columns of the unbonded prestressed slab-column structure model with slab and special-shaped column which has destroyed are strengthened with BFRP, through the 16-points vertical static loads tests of the strengthened monolithic structure specimen, the bearing performance of the strengthened member is studied and analyzed. The results show: BFRP play a better role, the old torsional cracks of spandrel beams are observably restricted, and the new cracks are enormously delayed the appearance time. The rigidity of the strengthened members is better recovered, compared with the former result. Because of good compatibility of BFRP and the member, BFRP has no desquamation breakage and shares in the force of reinforcing steel bar, strengthening member still have great bearing capacity. The effect of narrow space of BFRP hoop is better, the increasing layers of the BFRP can result in reduce of strength efficiency.
     In addition, on the basis of experiment study, in this thesis the torsional spandrel beam is analyzed with spatial truss model theory of inclined compressioneld considering concrete softening, the torsion and torsion angle per load step is calculated with the program compiled by turbo C, compared with the actual result, the result obtained with the theory can better inosculate to the actual result.
     At last,the disadvantages of this thesis are pointed out, and some recommendations for future research are set forth.
引文
[1]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [2]中华人民共和国国家标准.混凝土结构加固设计规范(GB50367-2006)[S].北京:中国建筑工业出版社,2006.
    [3]东南大学,天津大学,同济大学合编.混凝土结构设计原理(上册)[M].北京:中国建筑工业出版社,2002.
    [4]殷芝霖,张誊,王振东.抗扭(钢筋混凝土结构设计理论丛书)[M].北京:中国铁道出版社,1990.
    [5]杨鸿飞.无粘结预应力板--异形结构一板八模型竖向荷载下梁板受力性能研究[D].重庆:重庆大学,2006.
    [6]江峰.无粘接预应力平板--异形结构竖向荷载一板八试验研究[D].重庆:重庆大学,2006
    [7]黄音.大跨度预应力次梁楼盖边梁--楼面梁协调扭转试验及研究[D].重庆:重庆大学.2004.
    [8] Thomast.T.C.Hsu,“Torsion of Reinforced Concrete”,Van Nostrand Reinhold Company,1984.
    [9]景萌.碳纤维加固复合受力钢筋混凝土箱梁抗扭性能的试验和理论研究[D].天津:天津大学,2005.
    [10]于庆荣,颜德妲等.混凝土结构[M].北京:中国建筑工业出版社,1994.
    [11] Michael P.Collins and Paullampert.Redistribution of moments at Cracking-The Key to Simpler Torsion Design? Analysis of Structural Systems for Torsion .Detroit: American Concrete Institute,1973, SP-35.
    [12]熊学玉,朱莉莉,赵勇,现代预应力混凝土结构正截面极限强度分析[J].结构工程师,2000(1).
    [13]姚晓征.FRP加固钢筋混凝土受扭构件的试验研究与理论分析[D].南京:东南大学,2004.
    [14]王秀存.CFS加固弯剪扭复合受力的钢筋混凝土箱形梁抗扭性能的理论研究[D].天津:天津大学,2004.
    [15]苏标. CFS加固弯剪扭复合受力的钢筋混凝土箱形梁抗扭性能的试验研究[D].天津:天津大学,2004.
    [16]吴胜达,预应力平板—异型结构在竖向荷载作用下的试验研究[D].重庆:重庆大学, 2004.
    [17]高顺,预应力平板—异型(短肢墙)结构在竖向荷载作用下的受力性能研究[D].重庆:重庆大学,2004.
    [18]岳清瑞,陈小兵,牟宏远.碳纤维材料(CFRP)加固修补混凝土结构新技术[J].工业建筑,1998.28(11).
    [19] Omar Chaallal,Mohsen Shahawy. Performance of Fiber Reinforced Polymer-Wrapped Reinforced Concrete Column under Combined Axial-Flexural Loading[J].ACI Structural Journal,2000,97(4):659~668.
    [20]顾平.薄片模型在计算钢筋混凝土剪扭构件中的应用[J].建筑结构学报,1995, 16(1): 41~49.
    [21]朱虹,张继文.CFRP条带加固对混凝土受扭构件开裂的影响[J].工业建筑,2003,33 (10): 72~74.
    [22]胡显奇,罗益锋,申屠年.玄武岩连续纤维及其复合材料[J].高科技纤维与应用.2002,27(2).
    [23]岳清瑞.我国碳纤维(CFRP)加固修复技术研究应用现状与展望[J].工业建筑,2000,30 (10).
    [24]扬勇新,岳清瑞.玄武岩纤维及其应用中的几个问题[J].工业建筑,2007,37(6).
    [25]周长东,黄承逵.玻璃纤维聚合物加固混凝土的抗弯性能研究[J].土木工程学报, 2005, 38(2) : 38~45.
    [26]吴智深. FRP复合材料在基础工程设施的增强和加固方面的现状与发展[A].中国纤维增强塑料(FRP)混凝土结构学术交流会论文集.北京:2000年6月, 5~20.
    [27]李忠献,许成祥.碳纤维布加固钢筋混凝土短的抗震性能的试验研究[J].建筑结构学报, 2002, 23(3): 41~48.
    [28]余流,王铁成.碳纤维增强钢筋混凝土框架的界限轴压比和延性分析[J].天津大学学报, 2003, 36(2): 205~209.
    [29]李忠献,景萌,苏标等.碳纤维加固弯剪扭钢筋混凝土箱梁抗扭性能的模型试验[J].土木工程学报,2005,38(12):38~44.
    [30]吴刚,魏洋,吴智深等.玄武岩纤维与碳纤维加固混凝土矩形抗震性能比较研究[J].工业建筑.2007, 37 (6).
    [31]龚斌文,赵晶晶,金文鑫.玄武岩纤维与碳纤维片材加固混凝土双向板的性能比较[J].建筑施工.2007, 29 (6).
    [32]丁洪涛.粘贴碳纤维布钢筋混凝土偏心受压柱试验与研究[D].长沙:湖南大学,2003.
    [33]易伟建,丁洪涛.碳纤维布加固混凝土偏心受压柱的试验研究[A].第六届全国建筑物鉴定与加固改造学术会议论文集.中国,长沙,2002.
    [34]冼巧玲,易伟建,丁洪涛.粘贴碳纤维布(CFRP)钢筋混凝土偏压试验研究[J].工业建筑,2004年第34卷第11期.
    [35]冼巧玲,易伟建,丁洪涛.外贴碳纤维布钢筋混凝土偏压强度和延性的影响因素分析工业建筑[J].2005年第35卷第5期.
    [36]童光兵.外包钢与碳纤维布复合加固钢筋砼偏压研究[D].武汉:武汉大学,2004.
    [37]卢亦焱,童光兵,赵国藩,张号军.外包钢与碳纤维布复合加固钢筋混凝土偏压受力全过程分析[J].工程力学,2006年7月.
    [38]罗立娜.碳纤维加固混凝土偏压构件正截面承载力的研究[J].结构工程师,2006年8月.
    [39]徐秀丽、刘伟庆、蓝宗建、黄卫.碳纤维加固钢筋混凝土受扭梁的试验研究[J].东南大学学报(自然科学版),2001.7.
    [40]飞虹,刘曙光,胡子付.碳纤维布加固钢筋混凝土受扭构件的试验研究[J].内蒙古科技与经济,2007年9月第17期.
    [41]吴刚,蒋剑彪,宗晟等.玄武岩纤维布加固混凝土梁试验研究.特种结构[J],2007,24(6).
    [42] A.Upadyay, V.Kalyanaraman. Simplified analysis of FRP box-girders[J].Composite Structures, 2003, 53: 217~225.
    [43] Medvedyev, O.O.,Tsybulya, Y.L.The Outlook for the Use of Basalt Continuous Fibers for Composite Reinforcement, Long Beach, CA, International SAMPE Technical Conference, 2004, p 275~279.
    [44] Teng JG, Chen JF, Smith DT, Lam L. FRP-strengthened RC structures.UK:John Wiley&Sons, 2002.
    [45] Teng, J.G., Cao S. Y., Lam L. Behavior of GFRP-strengthed RC cantilever slabs. Construction and Building Materials[J]. 2001, 15(7): 339~349.
    [46] Hashern Z.A., Yuan R. Short and long column behavior of pultruded Glass-fiber reinforced polymer composites[J]. Construction and Building Materials, 2001, 15(8): 369~378.
    [47] Shahawy M., Mirmiran A., Beitelman T. Tests and modeling of carbon-wrapped concrete columns[J]. Composites Part B: Engineering, 2000,31(6-7): 471~480.
    [48] Mander J.B., Priestley M. J. N., Park R. J. J. Theoretical stress-strain model for confined concrete[J]. ASCE, Journal of Structrual Engineering, 1998, 114(8):1804~1826.
    [49] Mirmiran A. Shahawy M., Samanm M. Strength and ductility of hybrid FRP concrete beam columns[J]. ASCE, Journal of Structural Engineering, 1999,125(10): 1085~1093.
    [50] Yuan H. et al, Theoretical solutions on interfacial stress transfer of externally bonded steel or composite laminates[J]. JSCE, 2001, 675(1-55): 27~39.
    [51] Report of research committee on FRP reinforcement for concrete structures[Z].Japan Concrete Institute, July 1997.
    [52] Luciano R., Sacco E. Damage of masonry panels reinforced by FRP sheets[J].International Journal of Solids and Structures, 1998, 35(15): 1732~1741.
    [53] Granata P. J., Parvin A. An experiment study on Kevlar strengthening of beam-column connections[J]. Composite Structures, 2001, 54(1): 27~35.
    [54] R.EI-Hacha, R.G.Wight, M.F. Green. Prestressed fiber-reinforced polymer laminates for strengthening structures[J]. New Materials in Construction,2001, 3: 111~121.
    [55] K.W. Neale. FRP for structural rehabilitation: a survey of recent progress[J].New Materials inConstruction, 2000, 2: 133~138.
    [56] T.T.C.Hsu,Y.L.Mo.Softening of Concrete in Torsional Members-Theory and Tests[J]. Journal of ACI,1985,5~6.
    [57] J.R.Robinson, J.M.Demorieux. Essais de Traction Compression sur Modeles d’ame de Poutre en Be’ton Arme’.Instiut de Recherches Applliqu’ees du B’eton Arme’(IRABA) Part1,1968,6, Part2,1972,5.
    [58] F.Vecchio,M.P.Collins.Stess-Strain Characteristics of Reinforced Concrete in Pure Shear. Final Report, IABSE Colloquim on Advanced Mechanics of Reinforced Concrere,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700