用户名: 密码: 验证码:
循环载荷作用下岩石损伤演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石作为一种非均质脆性材料在循环载荷作用下损伤破坏问题涉及到诸多工程领域。本文利用先进的MTS815岩石力学测试系统和12CHs SAMOS? System声发射测试系统对岩石在循环载荷作用下的损伤演化特性进行了较深入的研究。
     本文通过实验研究与理论分析相结合的方法,探讨了不同上限应力水平、不同下限应力水平、不同加载速率、不同含水量等不同实验条件下循环载荷作用时岩石的声发射特征,并利用岩石的声发射特征作为岩石损伤的宏观表现,分析了岩石在循环载荷作用下的损伤演化规律,建立了以声发射参数为损伤变量的岩石损伤演化方程,同时,在运用分形理论计算了循环载荷作用下岩石声发射关联维数的基础上分析了岩石关联维数的变化规律。所取得的主要研究成果如下:
     (1)在深入分析单轴压缩作用时不同载荷条件下岩石声发射特征的基础上改进了基于岩石声发射参数的损伤演化方程;同时利用岩石声发射Kaiser及Felicity效应探讨了循环门槛值问题,并发现Kaiser效应上限应力值为相应峰值强度的70%左右;
     (2)在等幅循环作用下上限应力对声发射的影响起主导作用,决定着声发射变化的趋势;下限应力的影响主要在循环末期,每循环中提高了声发射产生的时,即Felicity比值减小;加载速率对声发射的影响主要在声发射率上,速率加大使循环过程中的主裂纹形成、扩展速率增快,增大了声发射率,从而加快了岩石破坏的速率;不同饱和度下的声发射结果表明,含水量越多,声发射率越低,声发射数少,破坏时释放的能量少;
     (3)不同加载速率和不同应力变化幅度条件下的等幅循环载荷实验结果表明,岩石的声发射规律也体现出了相应的不同发展模式。不同的模式预示着岩石不同的破坏速率,稳定型表明岩石在循环载荷过程中破坏进程缓慢,需要更长的时;而突变型表明循环过程中破坏进程快速,岩石变形破坏的速率加快;建立了基于声发射参数的循环损伤演化模型;通过声发射定位技术分析了循环条件下声发射的时空演化特征,从时和空上研究了岩石的损伤演化规律;同时探讨了影响声发射定位的几个相关因素;
     (4)等幅循环载荷条件下声发射关联维数随着循环比呈降低趋势,即是一个降维的过程,但受不同实验条件的影响,其降维方式有所差异。声发射维数的变化和表示累积损伤的声发射数有良好对应关系,维数的变化是由于累积损伤变化的结果,与损伤有很好的相关关系。声发射分形维数变化和裂纹发展状态具有一致性,维数明显变化则表明裂纹发展快速,维数变化稳定表明裂纹变化不大。
As a kind of non-homogeneity & brittle materials, the damage failure of rock is a very important problem relating to many engineering fields under cyclic load. In the paper, studies on damage evolvement characteristics of rock have been presented with advanced rock mechanics test equipment named on MTS815 and 12CHs SAMOS~(TM) system acoustic emission (AE) instrument under cyclic load.
     In this paper, the acoustic emission rules have been studied using the methods of experiment research and theory analysis with different upper limited stress level, different lower limited stress level, different load rates and different saturation under cyclic load. Based on the theory that AE is the macroscopical behavior of damage, and is consistent with the damage, the damage evolvement rules have been analyzed; At the same time, the damage evolvement equations have been established; At last, the AE correlation dimension have been calculated using fractal theory, and analyzed the changing rules of correlation dimension. The results could be summarized as follows:
     (1)AE characteristics of rock have been studied under different load conditions under uniaxial stress state, and the damage evolvement equation based on AE parameter has been improved; The cyclic stress threshold has been studied through the AE Kaiser effect & Felicity effect experiment, and the upper stress of Kaiser effect is the 70% of peak stress.
     (2) The upper stress is the most important factor to AE under cyclic load, which determined the changing tendency of AE; The lower stress advanced the time of AE in every cycle at the end of cyclic load, that is to say, the Felicity ratio becomes smaller; Load rate affects the AE rate mostly, especially in the phase of main crack expanding, which improves the rate of main crack forming and expanding during the cyclic load, and reduces the time of failure; The AE results of different saturation experiment shows that the bigger saturation, the lower AE rate, and the total counts become few, at the same time the lower energy releases at the failure.
     (3) There are different load rates and stress ranges in cyclic load, there are different AE changing modes; Different mode predicts the different failure rate of rock, that is to say, the type of stabilization needs more time of failure, and the type of mutationist needs little time of failure; The cyclic damage evolvement mode based on AE parameter has been established; The space-time evolvement characteristics have been analyzed through AE location, and damage evolvement rule has been studied from time and space; At the same time several factors influencing the precision of AE location have been studied.
     (4) The correlation dimension shows the downward tendency with the cyclic ratio increasing under cyclic load, but there are some discrepancies under different experiment condition; The AE correlation dimension is according with the AE total counts which show the cumulate damage, and the correlation dimension which has the correlativity with the damage will change because of the cumulate damage under cyclic load. The downward tendency of correlation dimension shows that the crack of forming and expanding have the tendency from chaos to regularity; The AE correlation dimension changing is consistent with the crack changing, that is to say, the obvious dimension changing shows that the crack changing quickly ,and the steady dimension shows that the crack state has little change.
引文
[1]许江,鲜学福,王鸿.循环载荷作用下周期充水岩石变形规律的研究[J].地下空与工程学报.2006,4(2):556-561.
    [2]王鸿.循环载荷作用下岩石变形特性的试验研究[D].重庆大学硕士学位论文,2006.
    [3]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [4]冯西桥.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [5]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社.
    [6]刘洋,赵明阶.岩石损伤本构理论研究综述[J].山东交通学院学报.2005,4(12):40-51.
    [7]孙卫军,周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119.
    [8]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    [9]卢应发,张梅英,葛修润.大理岩静态和循环荷载试件的电镜分析[J].岩土力学,1990,11(4):75-80.
    [10]赵永红.岩石破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992,11(3):284-294.
    [11]吴立新,王金庄,孟顺利.煤岩损伤扩展规律的即时压缩SEM研究[J].岩石力学与工程学报,1998,17(1):9-15.
    [12]陈耕野,李造鼎,刘斌.岩石中裂隙损伤对超声波衰减影响的实验研究[J].黄金,1995,16(2):15-20.
    [13]张明,李仲奎,杨强等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,12(25):2493-2501.
    [14]陈忠辉,唐春安,徐小荷等.岩石声发射Kaiser效应的理论和实验研究[J].中国有色金属,1997,1(7):9-12.
    [15] Tang C A, Xu X H. Evolution and propagation of material defects and Kaiser effect fuction[J]. Journal of Seismological Research. 1990,13(2):203-213.
    [16]纪洪广.混泥土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2003.
    [17] Kaiser J..A Study of Acoustic Phenomeain Tensitle Tests.Ph.D.Dissertation,Technische Hochschule Muechen, FRC 1950.
    [18] Goodman R E. Sub audible noise during compression of rock [J].GeoSocAmBull,1963,74:487-490.
    [19]刘东燕,朱可善,胡本雄.含裂隙岩石受压破坏的声发射特性研究[J].1998,04:19-24+60.
    [20]李庶林,尹贤刚,王泳嘉.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004, 15:13-17.
    [21]梁正召,唐春安,黄明利等.岩石破裂过程中声发射模式的数值模拟[J].东北大学学报,2002, 10:92-95.
    [22]杜云,张春明.混凝土疲劳特性的AE特性研究[J].辽宁工程技术大学学报,2001,1(20):46-49.
    [23]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1811.
    [24]蒋宇.周期荷载作用下岩石疲劳破坏及变形发展规律[D].上海交通大学硕士学位论文,2003.
    [25]张晖辉,颜玉定,余怀忠等.循环载荷下大试件岩石破坏声发射实验——岩石破坏前兆的研究[J].岩石力学与工程学报,2004,21:60-67.
    [26]傅宇方,唐春安.岩石声发射Kaiser效应的数值模拟试验研究[J].力学与实践,2000,6(22):42-44.
    [27]李元辉,袁瑞甫.岩石受载记忆的声发射实验研究[J].辽宁工程技术大学学报,2006,04:18-20.
    [28]赵兴东,李元辉,袁瑞甫.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2006,02(26):23-27.
    [29]郭彦双,黄凯珠,朱维申等.辉长岩中张开型表面裂隙破裂模式研究[J].岩石力学与工程学报,2007,3(26):525-531.
    [30]赵兴东,唐春安,李元辉等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,S2(25):14-18.
    [31]谢和平,鞠杨.分数维空中的损伤力学研究初探[J].力学学报,1999,3(31):300-310.
    [32]秦四清等.岩石声发射在空上的分形分布研究[J].应用声学,1992,11(4):101-107.
    [33]腾山邦久.声发射技术的应用[M].冯夏庭译.北京:冶金工业出版社,1996.
    [34] T Hirata et al. Fractal structure of spatial distribution earthquake-The two point correction fuction[J]. Geophys.J.R.Asrron.Soc.,1980,62:303-320.
    [35]纪洪广.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,2001,6(20):801-804.
    [36]高峰,李建军,李肖音等.岩石声发射特征的分形分析[J].武汉理工大学学报,2005,07(27):67-70.
    [37]尹贤刚,李庶林,唐海燕.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报,2005,19(24):3512-3516.
    [38]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [39]吴德伦,黄质宏等.岩石力学[M].重庆:重庆大学出版社,2002.
    [40]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].重庆大学博士论文,2006.
    [41] B T. An exact solution to the radially end-constrained circular cylinder under triaxial loading[J].Int.J. Rock Mech.Min.Sci.,1971,8:165-178.
    [42] Balla A .Stress conditions in trialial compression[J].J.Soil Mech.Found. Engr. ASCE,1960,86:57-84.
    [43] R E古德曼著.王鸿儒,王鸿硕等译.岩石力学原理及其应用[M].水利出版社,1989.
    [44] Labuz J F and J M Bridel. Reducing frictional constraint in compression testing through lubrication[J]. Int. J.Rock Mech .Min. Sci.&Geomech.Abstr.1993(30):451-455.
    [45]刘福顺.无损检测基础[M].北京:北京航空航天大学出版社,2002.9.
    [46]杨明纬.声发射检测[M].北京:机械工业出版社,2005.1.
    [47]康勇.深埋隧道围岩破坏机理相关问题研究[D].重庆大学博士论文. 2006.
    [48]邵兆刚,丁原辰.塔北油区岩石声发射全过程曲线类型及特征[J].地质力学学报,1998,1(4):89-96.
    [49]曾正文,马瑾,吴秀泉等.单节理岩体变形与破坏过程中声发射能量的特征及意义[J].地地质,1994,1(16):71-77.
    [50]万志军,李学华,刘长友.加载速率对岩石声发射活动的影响[J].辽宁工程技术大学学报,2001,4:87-89.
    [51]马胜利,雷兴林,刘力强.标本非均匀性对岩石变形声发射时空分布的影响及其地学意义[J],地球物理学报.,1(47):127-131.
    [52]葛修润,蒋宇,卢允德等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,10(20):1581-1585.
    [53]任建喜,蒋宇,葛修润.单轴压缩岩石疲劳寿命影响因素试验分析[J].岩土工程学报.2005,11(27):1282-1285.
    [54]葛修润,卢应发.循环载荷作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,3(14):56-60.
    [55]葛修润.周期载荷下岩石大型三轴试件的变形和强度特性研究[J].岩土力学,1987,2(8):11-19.
    [56]葛修润,任建喜,浦毅彬等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,2(23):191-195.
    [57]卢应发,张梅英,葛修润.大理岩静态和循环载荷试件的电镜试验分析[J].岩土力学,1990,2(11):75-80.
    [58]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [59] B.I.桑多尔.循环应力与循环应变的基本原理[M].北京:科学出版社,1985.
    [60]胡新亮,马胜利,高景春等.相对定位法在费完整岩体声发射定位中的应用[J].岩石力学与工程学报学报,2004,2(23):277-283.
    [61]巴晶,刘力强,马胜利.岩石力学试验中的声发射源定位技术[J].无损检测,2004,7(26):342-348.
    [62]刘立强,马胜利,马瑾等.岩石构造对声发射统计特征的影响[J].地地质,1999,21(4):377-386.
    [63] Lockner D,Byerlee J.Fault growth and acoustic emissions in confined granite[J],Appl Mech Rev,1992,45(3-2):165-173.
    [64] Lockner D.The role of acoustic emission in the study of rock fracture.Int Rock Mech Min Sci.,1993,30:883-990.
    [65]蒋海昆,张流.岩石微破裂时空强分布特征及其动态演化过程的声发射研究进展[J].世界地译丛,1998,5:1-10.
    [66] Loepold Müller - salzburg, Xiurun Ge. Studies on the Mechanical Behavior(Deformation Behavior)of Jointed Rock Masses under Cyclic Load. The 5th Int. Congress on Rock Mechanics,Australia,1983(1):43-49.
    [67]席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术, 2004, 26(3):193-198.
    [68] Ray, S. K. (Central Mining Research Inst); Sarkar , M. ;Singh , T. N. Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(4):543-549.
    [69]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807-1810.
    [70]郝柏林.混沌与分形[M].上海:上海科学技术出版社,2004.
    [71]陈颙,陈凌.分形几何学[M].北京:地出版社,2005.
    [72]吕金虎.混沌时序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [73]许江,李贺,鲜学福等.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践,1986,4:16-20.
    [74]谢应齐,曹杰.非线性动力学数学方法[M].北京:气象出版社,2001.
    [75]卢春生,柯孚久,白以龙等.演化诱致突变的计算机模拟[J],中国科学A,1995,25(1):54-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700