用户名: 密码: 验证码:
新型锥度螺旋填料开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
填料塔是化学工业中常用的一种气液分离设备,填料作为填料塔的核心构件,其性能对填料塔的操作性能及应用范围有极大的影响。随着全球石油化学工业的高速发展,对新型填料的开发与应用,也越来越受到人们的高度关注。新型填料的开发,以往总是简单地从尽可能增加比表面积和空隙率,减少填料间的相互嵌套来设计填料自身的几何形状,这就使得新型填料的开发难以取得突破性进展。
     我们自己设计的锥度螺旋填料,设计原理与结构都不同于现有工业塔填料的新型结构填料。锥度螺旋填料独特的结构,使其具有与常规填料完全不同的流体力学特性。此填料具有处理能力大,阻力压降小,动持液量大、制作简易等优点。
     在塔径为44.3mm的吸收塔内,以空气和水为实验介质进行冷模实验,研究了30度锥度螺旋填料、45度锥度螺旋填料、60度锥度螺旋填料、θ环填料相、拉西环填料五种填料在空塔气速为0.091至0.453m/s,液相喷淋密度为81.51至163.01m~3/(m~2.h~1)时的流体力学性能;以水、二氧化硫和空气混合物为实验介质进行冷模实验,研究了60度锥度螺旋填料、θ环填料相、拉西环填料三种填料在空塔气速为0.091至0.362m/s,液相喷淋密度为81.51至146.71m~3/(m~2.h~1)时的传质性能。结果表明,60度锥度螺旋填料的流体力学性能和传质性能最好,以每个传质单元的压降(ΔP×H_(OG))为指标进行综合性能评价,60度锥度螺旋填料也是最好。根据实验数据回归出60度锥度螺旋填料的压降与液泛气速的关联模型,探讨了锥度螺旋结构对填料流体力学性能和传质性能的影响。
The packing tower that is one kind of gas-fluid splitter is commonly used in the chemical industry, the packing is the core component of the packing tower, its performance has the enormous influence to the operation capability and the application scope of the packing tower. Along with the high speed development of the petrochemistryl industry in the whole world, people have high attention to the development and the application of the new packing. We have a little progress in the development of the new packing, for we always want to simply increase the relative surface and the percentage of interspace and to reduce the mutual nesting between the packings by designing the geometry of packing .
    Conical degree spiral packing designed by us has the different principle of design and the different structure with the existing industrial tower packing. Conical degree spiral packing has unique structure, and has completely different hydromechanical characteristics with the conventional packing. Conical degree spiral packing has the advantage in the handling ability, pressure drop and dynamic holdup liquid and so on.
    Hydromechanical characteristics of conical degree spiral packing, θ- ring Packing and porcelain Raschig ring packing were measured with water and air as flowing media in φ 44.3 mm absorption tower .The gas speed of the experiment is from 0.091 m/s to 0.453 m/s ,the liquid phase speed of the experiment is from 81.51 m~3/ (m~2. h~1) to 163.01 m~3/ (m~2. h~1) .Mass transfer characteristics of conical degree spiral packing, θ - ring Packing and porcelain Raschig ring packing were measured with water and sulfur dioxide and air as flowing media in φ 44.3 mm tower. The gas speed of the experiment is from 0.091 m/s to 0.362 m/s ,the liquid phase speed of the experiment is from 81.51 m~3/ (m~2. h~1) to 146.71 m~3/ (m~2. h~1) .From the result of the experiment, Hydromechanical characteristics and mass transfer characteristics of 60 degree conical degree spiral packing are best ,to appraise the overall performance of the packing by the pressure drop of each mass transfer unit, 60 degree conical degree spiral packing is best .The regression equation of pressure drop and gas speed of flooding point for 60 degree conical degree spiral packing has been given in this paper . This article has discussed the influence of the conical degree spiral structure to the packing hydromechanics characteristics and mass transfer characteristics. From the result of experiment, conical degree spiral packing has fine hydromechanical characteristics and mass transfer characteristics relatively.
引文
[1] 刘乃鸿.工业塔新型规整填料应用手册[M].天津:天津大学出版社,1993:5-10.
    [2] 陈大昌.塔填料的工业应用及评价[J].化学工程,1995,23(3):15-23,64.
    [3] 袁孝竟.现代填料的发展[J].石油化工设计,1994,13(4):11-16.
    [4] 陈强,王树楹.塔器技术的发展现状与展望[J].石油化工设备,1997,26(4):25-32.
    [5] Jorge A, Bonilla. Don't Neglect Liquid Distributors. CEP, 1993, 89(3): 49-52.
    [6] 时均.化学工程手册[M],上卷,第二版.北京:化学工业出版社,1996:67-69。
    [7] 兰州石油机械研究所.现代塔器技术[M],第一版.北京:烃加工出版社,1990:326-329.
    [8] 王树楹.新型多管式填料塔[P].中国专利:90108481.6,1992.
    [9] 梁朝林,黄洪,梅慈云.两种新型填料的性能测试与评价[J].化学工程,1994,22(2):6-11.
    [10] 黄洪,邓淑华,杨卓如.共轭环填料萃取塔的传质性能研究[J].华南理工大学学报(自然科学版),1999,27(2):13-16.
    [11] 朱永华,郁威,陈德宏等.QH-Ⅰ填料在中等界面张力体系的应用-Ⅰ流体力学性能[J].化工冶金,1997,18(2):143-148.
    [12] 陈德宏,刘余祥,费维扬.QH-Ⅰ填料在中等界面张力体系的应用-Ⅱ传质特性.化工冶金,1997,18(3):239-244.
    [13] 费维扬,温晓明.QH-Ⅰ型扁环的研究与应用.化学工程,1995,23(3):24~27.
    [14] 朱文耀,张月明,费维扬.QH-Ⅰ型扁环填料在液化气胺萃取塔改造中的应用[J].现代化工,1998,(7):16-18.
    [15] 贾绍义,胡浑,李杰等.塑料扁环填料流体力学及传质性能的研究[J]化学工业与工程.2000,17(4):198-203.
    [16] 兰州化工机械研究院.三叶式扁环填料[P].中国专利:ZL98240725.4,1999.
    [17] 袁孝竟.塔填料的发展现状[J].石油化工设计,1994,13(2):54-57.
    [18] Bellit R.填料塔分析与设计[M].天津大学化工分离与新型填料开发中心,天津大学化学工程研究所译.北京:化学工业出版社,1993:25-29.
    [19] 董谊仁,裘俊红.现代填料塔技术[J].化工生产与技术,1997,13(1):1-9.
    [20] Bain W A,Hougen O A.Flooding Velocities in Packed Columns[J].Trans Am Inst Chem Engrs, 1944,40(9):389-393.
    [21] 董谊仁.填料塔压降和液泛研究进展[J].化学工业程.1994,11(2):23-34.
    [22] Eckert J S. Selecting the Proper Distillation Column Packing.Chem Eng Progr,1970,66(3): 39-44.
    [23] 莱恩喑特·毕力特著.填料塔分析与设计(中译本)[M].j匕京:化学工业出版社,1993:106-109.
    [24] Billet R,Shultes M. Modelling of Pressure Drop in Packed Columns[J].Chem Eng Technol, 1991,14 (4):89-95.
    [25] Levn M.Tower packing and packed tower design[M],New York:The U S Stoneware Co, 1953:149-153.
    [26] Perry R H. Chemical Engineer's handbook,6th ed[M]. New York:McGraw—Hill, 1984:212-217.
    [27] 董谊仁.填料因子的确定方法和物理意义[J].高校化学工程学报,1994,8(4):323-331.
    [28] Strigle R F.Randoen.Packings and Packed Towers[M]. Houston:Gulf Publishing, 1987:128-131.
    [29] Kister H Z,Gill D R.Predict Flood Point and Pressure Drop for Modem Mandon Packing[J] Chem Eng progr, 1991,87(2):32-42.
    [30] Kister H Z,Gill D R.Distillation and absorption[J].Inst Chem Eng Symp seris, 1992,28(6): 109-113.
    [31] Kister H Z.Distillation Design[M], New York, McGraw-Hill, 1992:106-111
    [32] Strigle R F,Rukovena F.Packed Distillation Column Design.Chem Eng progr,1979,75(3):86-90.
    [33] 金祖源.填料塔体动持液量和泛点气速经验关联式[J].化学工程,1982,11(3):26-29.
    [34] Comell D. Knapp W G,Faire J F.Mass Transfer in Packed Columns.Chem Eng Prog. 1960, 56(5):68-74.
    [35] Onda K,Takeuchi,OkumotoT J.Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns[J].Chem Eng Japen, 1968,45(1):56-62.
    [36] Bolles W L,and J R Fair.Improved Msaa-tranfer Model Enhance Packed Column Design[J].Chem Eng,1982, 89(14): 109-113.
    [37] Mangers R J, A B Ponter. Effect of Viscosity on Liquid Film Resistance to Mass Transfer in a Packed Column. Ind Eng Chem. Process Des Dev.1980,19(4):530-537.
    [38] 曹维.国外填料塔最新发展[J].石油化工设备,2000,29(2):34-37.
    [39] 维扬.国外化工塔器的若干最新进展[J].化工进展,1996,(6):40-44.
    [40] 吴兆亮,金祖源,杜佩衡.填料塔动持液量新的测量方法—连续水循环容量法[J].石油化工设备,1993,22(3):31-35.
    [41] 王树楹.现代填料塔技术指南[M].北京:中国石油出版社,1998:13.
    [42] Max.Leva.Tower Packings and Packed Tower Design[J].C E P,1954,10(5):57-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700