用户名: 密码: 验证码:
多层复合磁性纳米吸波材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对具有优良电磁吸波性能的铁氧体材料在红外波段吸波能力差的问题,提出采用纳米尺度的核/壳多层包覆结构,并用非均匀沉淀法和溶胶-凝胶法制备了Fe_3O_4/SiO_2/Al_2O_3、Fe_3O_4/SiO_2/TiO_2、Fe_3O_4/SnO_2/Al_2O_3和Fe_3O_4/SnO_2/TiO_2等一系列纳米材料,用TEM、XRD、FT-IR、VSM等现代分析测试手段研究了材料的微观组织特征、包覆情况以及多层复合材料的磁性能,并用双波段红外发射仪测定了四种材料的红外发射率,分析了材料在红外波段的吸波性能。
     首先探讨了非均匀沉淀法和溶胶-凝胶法的制备工艺,阐述在制备Fe_3O_4,Fe_3O_4包覆SiO_2和SnO_2以及后续包覆Al_2O_3和TiO_2中的一些工艺影响因素。
     通过TEM的观察和XRD和FT-IR的研究,证实Fe_3O_4、Fe_3O_4/SiO_2、Fe_3O_4/SnO_2、Fe_3O_4/SiO_2/Al_2O_3、Fe_3O_4/SiO_2/TiO_2、Fe_3O_4/SnO_2/Al_2O_3以及Fe_3O_4/SnO_2/TiO_2的尺度均在纳米量级,在Fe_3O_4/SiO_2/Al_2O_3、Fe_3O_4/SiO_2/TiO_2、Fe_3O_4/SnO_2/Al_2O_3及Fe_3O_4/SnO_2/TiO_2中确实存在多层包覆。
     通过VSM测量得到Fe_3O_4的比饱和磁化强度(σs)为72emu/g,矫顽力(Hc)为48Oe。在包覆SiO_2和SnO_2以及Al_2O_3和TiO_2后,材料依然保持了良好的磁性能。
     红外发射率的测定,证明了Fe_3O_4自身在红外波段吸波效果很差,而且SiO_2或SnO_2的包覆没有改善Fe_3O_4在红外波段的吸波性能,但是在进一步包覆Al_2O_3或TiO_2后,红外发射率由Fe_3O_4的0.97分别降至0.82~0.83,Fe_3O_4在红外波段的吸波性能得到了改善。这些结论表明核/壳结构多层包覆纳米复合材料确实具备多波段兼容吸波的潜力,可望成为今后吸波材料发展的方向之一。
To improve the infrared absorbing performance of ferrite magnetic material which has good electromagnetic wave absorbing performance, the core/shell structured multilayer coating is introduced to achieve multiple wavelength range absorbing. A series of materials, Fe_3O_4/SiO_2/Al_2O_3, Fe_3O_4/SiO_2/TiO_2, Fe_3O_4/SnO_2/Al_2O_3 and Fe_3O_4/SnO_2/TiO_2 have been prepared by heterogeneous nucleation and sol-gel methods. The microstructure, coating state, magnetic and infrared absorbing properties of as-prepared materials have been studied by various experimental equipments such as TEM, XRD, FT-IR,VSM and dual wavelength range emissivity apparatus.
     First, the preparation processes of heterogeneous nucleation and sol-gel methods were investigated, from which some key process parameters were achieved and then used to prepare the multilayer coated nanoparticles studied in this thesis.
     It is shown that the average diameters of Fe_3O_4, Fe_3O_4/SiO_2, Fe_3O_4/SnO_2, Fe_3O_4/SiO_2/Al_2O_3, Fe_3O_4/SiO_2/TiO_2, Fe_3O_4/SnO_2/Al_2O_3 and Fe_3O_4/SnO_2/TiO_2 are all in nano-scale and that multilayer coated structures exit in Fe_3O_4/SiO_2/Al_2O_3, Fe_3O_4/SiO_2/TiO_2, Fe_3O_4/SnO_2/Al_2O_3 and Fe_3O_4/SnO_2/TiO_2.
     The specific saturation magnetization (σs) and the coercivity (Hc) of Fe_3O_4 are 72emu/g and 48Oe, respectively. Further coating of SiO_2, SnO_2, Al_2O_3 and TiO_2 affects magnetic performances little.
     By using the dual wavelength range apparatus, it is shown that the infrared absorbing performance of Fe_3O_4 is very bad. There is no obvious improvement of the infrared absorbing ability of Fe_3O_4 in coating of SiO_2 or SnO_2. While further coating of Al_2O_3 or TiO_2, the infrared emissivity of the multilayer coated nanoparticles has been reduced to 0.82~0.83 from 0.97 of Fe_3O_4. These results show that core/shell structured multilayer coated nano composites have the potential for multiple wavelength range absorbing, and they are expected to become a series of absorbing materials in the future.
引文
[1].都有为.磁性材料新近进展[J].物理, 2006, 35(9): 730~739.
    [2].吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件, 1997, 28(2): 26.
    [3].步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报, 2001, 15(5): 14~17.
    [4]. Praveen S, Babbar V, Archana R, et al. Complex Permeability and Permittivity, and Microwave Absorption Studies of Ca(CoTi)xFe12-2xO19 Hexaferrite Composites in X-band Microwave Frequencies[J]. Materials Science Engineering, 1999, (67): 132~138.
    [5].阳开新.铁氧体吸波材料及其应用[J].磁性材料及器件, 1996, 27(3): 19~23.
    [6].王海.雷达吸波材料的研究现状和发展方向[J].上海航天, 1999, (1): 55~59.
    [7].方亮,龚荣州,官建国.雷达吸波材料的现状与展望[J].武汉工业大学学报, 1999, 21(6): 21~24.
    [8]. Viau G, Ravel F, Fievet F. Preparation and Microwave Characterization of Spherical and Monodisperse Co-Ni Particles[J]. Magnetism and Magnetic Materials, 1995, (2): 140~144.
    [9].盘荣俊,何宝林.纳米颗粒表面包覆技术[J].化学与生物工程, 2005, 7: 40~44.
    [10].王利剑,郑水林.我国无机包覆型复合粉体制备研究现状[J].化工矿物与加工, 2005, 1: 5~9.
    [11].杨永林,杨毅,程志鹏,等.无机纳米粒子包覆研究进展[J].化工科技, 2006, 14(5): 28~32.
    [12].杨晓辉,宋秀芹,张雪红.纳米金属氧化物空心球的制备(续)[J].微纳电子技术, 2003, 40(10): 27~29.
    [13]. Caruso F. Nanoengineering of article surfaces. Adv Mater, 2001, 13: 11~16.
    [14].杨喜云,龚竹青.分散剂对Fe3O4表面化学特性的影响[J].中南大学学报(自然科学版), 2005, 36(2): 243~247.
    [15]. Wu M Z. Magnetic properties of SiO2-coated Fe nanoparticles. Journal of Applied Physics, 2002, 92(11): 6809~6912.
    [16].张冠东,官月平,单国彬,等.纳米Fe3O4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用[J].过程工程学报, 2002, 2(8): 319~324.
    [17]. Wang J, Yang P P, Fan M Q, et al. Preparation and characterization of novel magneticZrO2/TiO2/Fe3O4 solid superacid [J]. Materials Letters, 2006, 5: 218~223.
    [18].黄冠,何捍卫,刘晓峰,等. Fe2O3粉末表面非均匀成核法包覆[J].粉末冶金材料科学与工程, 2006, 11(2): 114~117.
    [19].李竟先,吴基球,鄢程.纳米颗粒的水热法制备[J].中国陶瓷, 2002, 38(5): 36~39.
    [20].张巨先,杨静漪,高陇桥,等. Al2O3和Y2O3包覆的SiC复合粒子制备[J].无机材料学报, 1999, 3(14): 380~385.
    [21].邹建,高家诚,王勇,等.纳米TiO2表面包覆氧化铝的热力学[J].功能材料, 2004, 5(35): 573~576.
    [22].关毅,程琳俨,张金元.非均相沉淀法在无机包覆中的应用[J].材料导报, 2006, 7(20): 88~92.
    [23].王世敏,许祖勋,傅晶.纳米粉体制备技术[M].北京:化学工业出版社, 2002.
    [24]. Briuker C J, Scherer G W. Sol-gel Science: The Physics and Chemistry of S-G Processing[M]. Academic Press, INC, 1990.
    [25].余家国,赵修建. TiO2纳米粉体的溶胶-凝胶工艺制备和光催化活性表征[J].中国粉体技术, 2000, 6(2): 6~10.
    [26].陶国忠,古宏晨,陈爱平,等. Sol-gel法制备TiO2粉末的光催化剂研究[J].华东理工大学学报, 2002, 26(1): 62~65.
    [27].沈伟韧,贺飞,赵文宽,等. TiO2纳米粉体的制备及光催化活性[J].武汉大学学报, 1999, 45(4): 389~392.
    [28].张朝平,黄毅,申德君,等.溶胶-微乳液化学剪裁制备TiO2纳米颗粒[J].稀有金属, 2002, 26(4): 257~261.
    [29].陈龙武.微乳液反应法制备氧化铝(含水)超细微粒[J].高等学校化学学报, 1995, 16(1): 13~16.
    [30].王晶,邱竹贤,谢朋,等.有机醇盐sol-gel法纳米Al2O3粉体制备及特征[J].有色金属, 2001, 22(2): 90~93.
    [31]. Viadimir V S, Radovan P O. Electrical conductivity of sol-gel derived yttriar-stablized zirconia[J]. Ceramics International, 2001, 27(8): 89~101.
    [32].赵青,常爱民,简家文,等.改性溶胶-凝胶法制备ZrO2纳米粉及其团聚控制[J].材料科学与工程学报, 2003, 21(5): 683~686.
    [33]. DelaRosa F N, Esquivias, Craievich A F, et al. Structural study of silicasonogels[J]. J Non-cryst Solids, 1990, (2): 211.
    [34]. Chaumont D, Craievich A, Zarzycki A. Effect of the ultrasoundon for mation of ZrO2 solsandwetgels[J]. J Non-cryst Solids, 1992, (4): 147~148.
    [35].任书霞,杨丹.溶胶-凝胶法在纳米粉体制备中的应用[J].中国粉体技术, 2006, (1): 48~50.
    [36].张霞,赵岩,张彩碚,等. Co3O4/Fe2O3核-壳粒子的制备及光学性能研究[J].东北大学学报(自然科学版), 2005, 26(12): 1200~1203.
    [37]. Zheng R K, Wen G H, Fung K K, et al. Training effect of exchange bias in Fe2O3 coated Fe nanoparticles[J]. Physical Review, 2004, 69: 1~4.
    [38]. Shi G M, Zhang Z D, Yang H C. Al2O3/Fe2O3 composite-coated polyhedral Fe nanoparticles prepared by arc discharge[J]. Journal of Alloys and Compounds, 2004, 384: 296~299.
    [39].习东,宁琴,卢强华,等. Fe3O4(核)/Au(壳)纳米颗粒探针的制备及其在检测乙型肝炎病毒DNA中的应用[J].中华检验医学杂志, 2006, 29(4): 339~345.
    [40].陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报, 2004, 62(20): 2093~2097.
    [41]. Hu C G, Li Y, Zhang Y Y, et al. Sonochemical synthesis of ferromagnetic core-shell Fe3O4/FeP nanoparticles and FeP nanoshells[J]. Chemical Physics Letters, 2006, 428: 343~347.
    [42].许素娟,门守强,王彪,等. TiO2包覆石墨颗粒的制备及表征[J].高技术通讯, 2001, 1: 91~94.
    [43].颜秀茹,李晓红,等.纳米SnO2/TiO2包覆催化剂的制备及表征[J].高等学校化学通报, 2001, 22(4): 610~613.
    [44].岳林海,蔡菊香,华益苗. SiO2包覆超细CaCO3的结构和机理分析[J].浙江大学学报(理学版), 2002, 29(1): 68~72.
    [45]. Boehne H. Coated Objected[P]. DE 3507889, 1986.
    [46].谢国华.红外隐身涂料与雷达波吸收材料相容性的研究[J].材料工程, 1992, 10(5): 5~7.
    [47]. Czaja, Stan. Electromagnetic Radiation Absorber And Method For The Production Thereof [P]. US 5561428, 1996.
    [48]. Pusch, Gunter. Camouflage Materials Having a Wide-band Effect And System Incorporating Same[P]. US 4495239, 1985.
    [49].谢国华.红外隐身材料的现状与展望[J].宇航材料工艺, 2001, 10(4): 5~10.
    [50]. Saito. Electromagnetic-wave Shielding And Light Transmitting Plate And Panel LaminatedPlate[P]. US 6469440, 2002.
    [51].谢凤宽,陈晓磊,庄书娟,等.液相沉积法表面包覆改性纳米陶瓷微粒及机理研究发展[J].材料导报, 2006, 5(20): 153~157.
    [52]. Lee J W, Isobe T, Senna M J. Colloid and Interface Science 1996, 177: 490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700