用户名: 密码: 验证码:
炭黑填充聚乙烯导电复合材料气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将炭黑(carbon black CB)分散到聚合物基体中制得导电复合材料,当炭黑含量超过某一临界值(称为渗阈值)时,复合材料的电阻出现显著的下降。进入导电区的复合材料接触到有机溶剂或蒸汽时,由于吸附有机溶剂或蒸汽而使聚合物基体产生溶胀或溶解,导致复合材料内部的炭黑粒子渗阈通道被破坏,复合材料的电阻显著上升。基于这一特性,炭黑/聚合物复合材料可作为化学电阻器或电子鼻来检测、鉴别和定量分析不同的有机溶剂或蒸汽,并在许多领域获得应用。
     本文通过溶液共混成功制备出炭黑填充聚乙烯基体气敏导电复合材料,结合材料的微观分析(场发射扫描电镜),得到固化后的复合材料为多孔结构。实验采用丝网印刷制作的梳状电极和聚乙烯(polyethylene PE)作为基片材料,解决了电极一致性和复合材料的裂纹现象。
     实验证明,复合材料中填料的浓度显著影响其电阻值,它随炭黑含量的变化过程中出现最小值,当复合材料的电阻出现最小值后,炭黑含量的变化不会影响复合材料的电阻值,但是复合材料的最佳炭黑含量要高于渗阈值。
     实验进一步探讨了溶剂性质(浓度、极性、溶度参数)对复合材料气敏性能的影响。另外,对40次重复试验进行数据分析,引入标准偏差和相对误差值来评价元件的一致性。采用溶液共混法得到的CB/PE复合材料对二甲苯、氯仿等挥发性有机化合物有较好的气敏性、良好的稳定性和重复使用性。
     当CB/PE导电复合材料掺杂乙烯-醋酸乙烯酯共聚物(ethylene-vinyl acetate resin EVA)后,CB/PE-EVA复合材料对弱极性和极性(乙醇、甲醛)溶剂表现出一定的敏感性,但同时增加了CB/PE-EVA复合材料的“负蒸汽系数”效应。
     实验表明:溶液共混法制备的炭黑/聚乙烯气敏导电复合材料是一类性能优良、具有良好应用前景的气敏材料。
Dispersion of carbon black (CB) into an insulating polymeric matrix yields conductive composite material characterized by a sharp decrease of its electrical resistivity when the filler content exceeds a critical value called percolation threshold. For the composites having sufficiently high conductivity, a significant increase in their electrical resistance can be seen when the composites are contacted with organic solvents or vapors. Swelling or dissolution of the polymer matrix and the resultant destruction of the conduction paths within the composites should take the responsibility. Based on this feature, the composites are capable of acting as chemiresistors or electronic noses to detect, distinguish and quantify various solvents or solvent vapors and might find applications in many fields.
     In the present thesis, we successfully fabricated Carbon Black/Polyethylene (PE) conductive polymer composites by solution blending. With materials’microstructure analyzing (Field Emission Scanning Electron Microscope), the composite material had porous structure after curing. The comb-shaped electrode was produced by screen printing, which had good consistent. We chose plastics as substrate material, in order to avoid cracks.
     The filler concentration in the composites notably influences the resistance of the composites. It can be seen that a minimum value resistance appears when the content of CB increases to a certain extent and the value of this optimum CB content is higher than the related percolation threshold.
     Properties of solvent that influence the composites gas sensibility are investigated, such as vapor concentration, polarity and solubility parameter. Referring to the values of standard deviation and relative error as the evaluating parameters, the consistency of gas sensing components was analyzed via 40 times repetitious experimental data. All the composites prepared in this thesis show a good sensibility to Volatile Organic Compounds having some solvency ability to matrix and also have a good stability and reuse ability, such as xylene and chloroform.
     When adulterating CB/PE with EVA (ethylene-vinyl acetate resin), the CB / PE-EVA was sensitive to weak polarity and polarity organic solvents (ethanol, formaldehyde) but had more“NVC”(Negative Vapor Coefficient) phenomenon.
     All of the experimental results indicate that the PE/CB composites prepared by polymerization filling exhibit good gas sensing properties, demonstrating the promising application potential.
引文
[1] H. G. Busmann, B. Gunther, U. Meyer. Polymer matrix composites filled with Nonporous metal powders: preparation and electrical properties. Nanostruct. Mater, 1999, 12(3): 531-536
    [2] J. Vilcakousmva, P. Saha, V. Kresalek, et al. Pre-exponential factor and activation energy of electrical conductivity in polyester resin/carbon fiber composites. Synth. Met, 2000, 113: 83-87
    [3] P. Xiao, M. Xiao, K. Gong. Preparation of exfoliated graphite/ polystyrene composite by polymerization- filling technique. Polymer, 2001, 42: 4813-4820
    [4]万影,朱泉尧,闻荻江.导电橡胶的压敏性和热敏性研究.橡胶工业, 1999, 46(8):482-485
    [5]薛怀国,沈之荃,张一烽等.聚(2, 4-噻唑)的合成及其稀土鳌合物的磁性能研究.化学通报, 2004, 18(1): 30-35
    [6] X. S. Yi, Y. H. Song, Q. Zheng. A preliminary on mechanical-electrical of graphite powder-filled high-density polyethylene. Appl. Polymer. Sci, 2000, 77: 792-799
    [7]宋义虎,潘颐,陶小乐等. CB/HDPE导电复合材料电-热平衡电学行为.功能高分子学报, 2000, 13(4): 37-41
    [8] J. H. Chen, N. Tsubokawa. A novel gas sensor from polymer-grafted carbon black: effects of polymer, crystalline organic compound, and carbon black on electric response to tetrahydrofuran vapor. Macromol. Sci.-PureAppl. ChemA, 2001, 38 (4 ):383-398
    [9] K. J. Albert, N. S. Lewis, C. L. Schauerl, et al. Cross reactive chemical sensor arrays. Chem. Rev, 2000, 100:2595-2599
    [10]罗延龄,王庚超,张志平. PTC特性的复合导电体系中炭粒子分布的渗阈模型与电阻率的计算,高分子通报, 1998 , 33(4):23-33
    [11] R. Stuempler, J. G. Reichenbach. Conducting Polymer Composites. Journal of Electro ceramics, 1999, 3(4):329-346
    [12] J. H. Chen, H. Iwata, N. Tsubokawa, Y. Maekawa, et al. Novel vapor sensor from polymer-grafted carbon black: effects of heat-treatment andγ-ray radiation-treatment on the response of sensor material in cyclohexane vapor. Polymer, 2002, 43:2201-2206
    [13] J. H. Chen, N. Tsubokawa. A Novel Gas Sensor from Polymer-grafted Carbon Black: Responsiveness of Electric Resistance of Conducting Composite from LDPE and PE-b-PEO-grafted Carbon Black in Various Vapors, Polymer. Adv. Techno, 2000, 11(6): 101-107
    [14]罗延龄.炭黑粒子表面功能化其应用,现代塑料加工应用. 2001, 13(6):37-41
    [15] B. J. Doleman, M. C. Lonergan, E. J. Severin, et al. Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Anal Chem, 1998, 70:4177-4190
    [16] B. J. Doleman, E. J. Severin, N. S. Lewis. Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding. Sens. Actuators B, 1998, 95:5442-5448
    [17] M. C. Lonergan, E. J. Severin, B. J. Doleman, et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors.Chem.Mater.1996, 9:2298-2302
    [18] N. Ando, M. Takeuchi. Electrical receptivity of the polymer layers with polymer grafted carbon blacks. Thin Solid Film, 1998, 334:182-185
    [19] J. H. Chen, N. T. subokawa. Novel gas sensor from polymer-grafted carbon black: vapor response of electric resistance of conducting composites prepared from poly (ethylene-block-ethylene oxide)-grafted carbon black. Journal of Polymer Sciences, 2000, 77: 2437-2447
    [20] S. Yoshikawa, J. H. Chen, N. Tsubokawa. Polymer grafting into carbon black by use of TEMPO - terminated polystyrene with controlled molecular weight .Journal ofPolymer Science , Part A: Polymer Chemistry, 1998 , 18(3):163-165
    [21] M. Narkis, S. Srivastava, R. Tchoudakov, et al. Sensors for liquids based on conductive immiscible polymer blends. Synch Met , 2000, 113:29-34
    [22] X. Jing, W. Zhao, L. Lan. The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites. J Mater.Sci.Lett, 2000, 19(3):377-384
    [23] F. Gubbels, P. Teyssi. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool To Design Electrical Conductive Composites. Macromolecules, 1994, 27: 1972-1978
    [24] O. Masaki, M. Kiyotaka, T. Maski, et al. A novel gas sensor from poly(ethylene glycol)-grafted carbon black. Responsibility of electric Resistance of poly (ethylene glycol) -grafted carbon black against humidity and solvent vapor. Polym J, 1999, 31:672-678
    [25] N. C. Das, T. Chaki, D. Khastgir, Conductive rubbers made by adding conductive carbon black to EVA, EPDM, and EVA-EPDM blends. Plast Rubber Compos, 2001, 30(6): 162-165
    [26] M. Appello. Characterization of dispersion of carbon black in high density polyethylene using dielectric measurements. Plast Rubber Compos, 2000, 29(6): 207-314
    [27] J. G. MalLette, L. M. Quej, A Marquez, et al. Carbon black-filled PET/HDPE blends: effect of the CB structure on theological and electric properties. J App1 Polym Sci, 2001, 81: 562-565
    [28] N. Tsubokawa, Y. Shirai, M. Okazaki, et al .A novel gas sensor from crystalline polymer-grafted carbon black: responsibility of electric resistance of composite from crystalline polymer-grafted carbon black against solvent vapor. Polym Bul1, 1999, 42(11): 425-431
    [29] Gang Yu, Mingqiu Zhang, Hanmin Zeng ,et al .Conductive polymer blends filled withcarbon black: positive temperature coefficient behavior. Polym Eng Sci, 1999, 39(9):1678-1687
    [30] Gang Yu, Mingqiu Zhang, Hanmin Zeng. Electrical properties of carbon black-filled polyolefin composites: effect of composition, processing and interactions. J Appl Polym Sci, 1998, 70(7):559-566
    [31] P. J. Mather, K. M. Thomas. Carbon black/high density polyethylene conducting composites materials. J Mater Sci, 1997, 32(9): 401-407
    [32] J. H. Chen, N. Tsubokawa. A Novel Gas Sensor from Polymer-grafted Carbon Black: Responsiveness of Electric Resistance of Conducting Composite from LDPE and PE-b-PEO-grafted Carbon Black in Various Vapors. Polym.Adv.Technol, 2000, 11(7):101-105
    [33] X. Zhou, W. Li. Conductive mechanism in CB/PE composites suitable of low voltage and high currents. Tsing Sci Technol, 1996, 1:376-383
    [34] N. Tsubokawa, S. Yoshikawa, K Maruyama, et al. Responsibility of electric resistance of polyethylene mine-grafted carbon black against alcohol vapor and humidity. Polym Bull, 1997, 39:217-224
    [35] J. H. Chen, M. Yoshida, Y. Maekawa, et al. Temperature-saw itchab1e vapor sensor material based on N-isopropyacrylamide and calcium chloride. Polymer, 2001, 42(8): 9361-9365
    [36] M. Okazaki, K. Maruyama, M. Tsuchida, et al. A novel gas sensor from polyethylene glycol)-grafted carbon black. Responsibility of electric resistance of poly (ethylene glycol)-grafted carbon black against humidity and solvent vapor. Polym J, 1999, 31(8):672-676
    [37] X. M. Dong, R. W. Fu, M. Q. Zhang, et al. Vapor induced variation in electrical performance of carbon black/poly (methyl methacrylate) composites prepared by polymerization filling. Carbon, 2003, 34(2):371-374
    [38] F. Zee, J. W. Judy. Micro machined polymer-based chemical gas sensor array. SensActuators B, 2001, 72:120-128
    [39] D. M. Bubb, R. A. Mcgill, J. S. Horwitz, et al. Laser-based recessing of polymer Nan composites for chemical sensing applications. J. Appl. Phys, 2001, 89: 5739-5743
    [40] J. R. Li, J. R. Xu, M. Q. Zhang, M. Z. Rong. Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon, 2003, 41: 2353-2360
    [41] S. G. Chen, J.W. Hu, MQ Zhang, MW Li, MZ Rong. Gas sensitivity of carbon black/waterborne polyurethane composites. Carbon, 2004, 42:645-651
    [42] M. Narkis, S. Srivastava, R. Tchoudakov, et al. Sensors for liquids based on conductive immiscible polymer blends. Synth Met, 2000, 113(11):29-34
    [43] S. Srivastava, R. Tchoudakov, M. Narkis. A preliminary investigation of conductive immiscible polymer blends as sensor materials. Polym Eng, 2000, 40(7):1522-1528
    [44] M. Q. Zhang, G. Yu, H. M. Zeng, et al. Two-step percolation in polymer blends filled with carbon black, Macromolecules, 1998, 31(19):6724-6730
    [45] A. R. Hopkins, N. S. Lewis. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent stimulants dimethylmethyl-phosphonate and diisopropylmethylphosponate. Anal Chem, 2001, 73:884-892
    [46] B. J. Doleman, M. C. Longeran, E. J. Severin, et al .Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Anal Chem, 1998, 70:4177-4190
    [47] E. J. Severin, B. J. Doleman, N. S. Lewis, An investigation of the concentration dependence and response to analyze mixtures of carbon black/insulating organic polymer composite vapor detectors. Anal Chem, 2000, 72:658-668
    [48] B. J. Doleman, R. D. Sanner, E. J. Severin, et al.Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors.Anal Chem, 1998, 70:2560-2564
    [49] E. J. Severin, R. D. Sanner, B. J. Doleman. Differential Detection of EnantiomericGaseous Analyses Using Carbon Black-Chiral Polymer Composite, Chemically Sensitive Resistors. Anal. Chem., 1998, 70: 1440-1443
    [50] J. A. Covington, J. W. Gardner., D. Briand, et al .A polymer gate FET sensor array for detecting organic vapors. Sens Actuators B, 2001, 77:155-162
    [51] A. Marquez, J. Uribe, R. Cruz. Conductivity variation induced by solvent swelling of an elastomer-carbon black-graphite composite. J Appl.Polym.Sci, 1997, 66:2221-2232
    [52] N. Tsubokawa. Functionalization of carbon black by surface grafting of polymers. Progress in Polymer Science, 1992, 17(12):417-420
    [53] Y. Iriyama, I. Shouji. Plasma-induced graft polymerization ontopowders. Polym J, 1994, 26:109-113
    [54]陆锦成,钦酸酷偶联剂.涂料工业,1994, 11(6):42-46
    [55]郑水林,粉体表面改性.北京:中国建材工业出版社, 1995
    [56] J. Chen, I. Hiromitsu, N. Tsubokawa. Novel vapor sensor from polymer- grafted carbon: effects of heat-treatment and Y- ray radiation treatment on the response of sensor material in cyclohexane vapor. Polymer, 2002, 43: 2201-2206
    [57] N. Tsubokawa, M. Tsuchida, J. Chen, et al. A novel contamination sensor in solution: the response of the electric resistance of a composite based on crystalline polymer-grafted carbon black. Sensors and Actuators B, 2001, 79: 92-97
    [58] J. Chen, N. Tsubokawa. Electric properties of conducting composite poly (ethylene oxide) and polyethylene oxide)-grafted carbon black in solvent vapor. Polymer J, 2000, 32(9):729-736
    [59] N. Tsubokawa, S. Yoshikawa, K. Maruyama, et al .Responsibility of electric resistance of polyethylene mine-grafted carbon black against alcohol vapor and humidity. PolymBull, 1997, 39:217-224
    [60] J. Chen, N. Tsubokawa. A novel gas sensor from polymer-grafted carbon black: effects of polymer, crystalline organic compound, and carbon black on electric response to tetrahydrofuran vapor. J. Macromol. Sci.-Pure App1.Chem.A, 2001,38(4):383-386
    [61] J. Chen, Y. Maekawa, M. Yoshida, et al. Radiation grafting of polyethylene onto conductive carbon black and application as a novel gas sensor. Polymer J, 2002, 34(4): 30-35
    [62] N. Tsubokawa, M. Hosoya, J. Kurumada. Grafting reaction of surface carboxyl groups on carbon black with polymers having terminal hydroxyl or amino groups using N, N'-dicyclohexylcarbodiimide as a condensing agent. Reac. Funct. Polymer, 1995, 27(6): 75-81
    [63]罗延龄.炭黑表面接枝改性在智能材料中的应用.化工新型材料, 2001, 29(12):23- 27
    [64]赵石林,窦强,马长义. LDPE/炭黑导电复合材料电学及力学性能研究.塑料工业, 1998, 26(6):25-27
    [65]杨永芳,刘敏江.聚乙烯石墨导电复合材料性能的研究.塑料加工应用, 2002, 24(4):1-4
    [66]夏英.炭黑填充聚乙烯导电复合材料的性能研究.材料导报, 2002, 31(3):48-50
    [67]李军荣,许家瑞,章明秋.填充型聚合物基气敏导电复合材料.材料导报, 2002, 16(11):48-51
    [68]金日光,华幼卿.高分子物理(第二版).北京:化学工业出版社, 2000.
    [69]张雄,黄锐. LDPE炭黑复合材料性能的研究.中国塑料, 1994, 8(3):26-34
    [70]侯艳辉.炭黑填充聚合物共混体系电性能与结构关系的研究.中山大学硕士学位论文.广州:中山大学(1999)
    [71] Yu Gang, Zhang Minggiu, Zeng Hanmin. Electrical properties of carbon black-filled polyolefin composites: effect of composition, processing and interactions. J Appl Polym Sci, 1998, 70:559-566
    [72]储九荣,孙会刚,温序铭.接枝聚乙烯改性高分子复合PTC材料性能的研究.塑料工业, 2001, 29(1): 41-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700