用户名: 密码: 验证码:
微量稀土Ce对Sn-Cu-Ni钎料焊点可靠性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无铅钎料的研究一直是热点课题,但是完全实现无铅钎料的商业化生产应用,仍有许多问题需要深入研究。本文以无铅钎料Sn-0.5Cu-0.05Ni为主要研究对象,在其中添加不同含量的稀土铈,较为系统地研究了微量稀土铈对Sn-Cu-Ni无铅钎料的物理性能、润湿性能焊点可靠性的影响。
     添加微量的稀土铈对Sn-Cu-Ni钎料的熔化温度和密度的影响不大,而电阻率有所上升,但低于传统的Sn-37Pb钎料的电阻率,说明该钎料具有良好的电流传输能力,可以减少电路中的发热。
     采用铺展性试验方法和润湿平衡法测试了Sn-Cu-Ni-Ce无铅钎料的润湿性,结果表明,在相同温度相同气氛下,微量稀土铈的加入可提高Sn-Cu-Ni无铅钎料的润湿性能,且N2保护和温度升高能更进一步提高钎料的润湿性,但温度不能过高,由于熔融钎料表面氧化,温度过高对改善钎料润湿性的作用有所削弱。
     对Sn-Cu-Ni-Ce无铅钎料焊点进行了力学性能测试,并分析了钎料的显微组织,结果表明,Sn-Cu-Ni钎料中添加适量的稀土铈,能够细化钎料组织,从而提高焊点的力学性能。当铈的含量为0.05%左右时,焊点的力学性能达到最佳值。铈含量超过0.05%后,继续增大稀土铈的添加量,Sn-Cu-Ni钎料的显微组织中出现黑色的稀土脆性化合物,焊点力学性能也随之有所下降。
     研究了在热循环试验条件下片式电阻Sn-Cu-Ni-Ce焊点力学性能的变化规律。结果表明,随着热循环次数的增加,片式电阻Sn-Cu-Ni-Ce焊点的剪切力逐渐降低;在长时间热循环条件下,焊点开始萌生裂纹,导致焊点可靠性下降。研究结果对新型Sn-Cu-Ni-Ce无铅钎料的发展应用有较好的理论指导意义。
The research in lead-free solder alloy has been a popular topic in recent years, but a lot of problems in full commercial production and application of lead-free solder must be studied in detail. Based on Sn-0.5Cu-0.05Ni lead-free solder, effects of rare earth Cerium on physical properties, wettability and reliability of soldered joints were studied.
     The addition of Cerium has little effect on melting temperature and density of Sn-Cu-Ni lead-free solder. Its resistivity is lower than traditional Sn-Pb solder, which indicated that the alloy has an excellent electrical transmit ability and it can reduce the heat produced in the electrocircuit.
     The wettability of Sn-Cu-Ni-Ce solder on Cu substrate was investigated by spreading area method and wetting balance testing method. The results show that the wettability of solder can be improved by adding minute amount of Cerium under the condition of same temperature and atmosphere. Both N2 atmosphere and heading up of the temperature can improve the wettability, but the temperature can’t be too high, or it will reduce the wettability.
     Mechanical properties of soldered joints and the microstructure of Sn-Cu-Ni-Ce solder were investigated respectively. The results indicate that with the increase of the content of Ce added to the Sn-Cu-Ni solder, the microstructure of Sn-Cu-Ni solder is fine and uniform, so the mechanical properties of soldered joints are improved observably. Experimental results also show that the optimum mechanical properties of joints are obtained when the content of Ce is about 0.05% which added to the Sn-Cu-Ni solder. However, when the content of Ce is over 0.05%, some black and brickle compounds show up, and the mechanical properties of soldered joints deteriorate as well.
     The influence of thermal cycling on mechanical property of the chip resistor joints which soldered with Sn-Cu-Ni-Ce solder was studied. The results indicate that with the increase of thermal cycling times, the shear forces of the chip resistor joints soldered with Sn-Cu-Ni-Ce solder decreased gradually, and the reliability of soldered joints decreased as well after long time cycling as a result of the existence of crack in soldered joint. The research results have favorable guidance meaning for the development and application of novel Sn-Cu-Ni-Ce lead free solder.
引文
[1] Glazer J. Microstructure and Mechanical Properties of Pb-free Solder Alloys for Low-cost Electronic Assembly: A Review[J]. Journal of Eletronic Materials, 1994, 23(8): 693.
    [2] Vincent J H, Humpston G. Lead-Free Solders for Electronic Assmbly[J]. Circuits Assmbly, 1994, 5(7): 38~39.
    [3]菅沼克昭.无铅焊接技术[M].宁晓山,译.北京:科学出版社, 2004. 48~50.
    [4]刘汉诚,汪正平,李宁成,等.电子制造技术[M].姜岩峰,张常年,译.北京:化学工业出版社, 2005. 221~227.
    [5]郭福.无铅钎焊技术应用[M].北京:科学出版社, 2006. 1~5.
    [6] Abtew M, Selvaduray G. Lead-free solders in microelectronics[J]. Material Science and Engineering: R, 2000, 27(5): 95~141.
    [7]张文典.实用表面组装技术[M].北京:电子工业出版社, 2006. 150~180.
    [8]周甘宇. Sn-Zn系和Sn-Cu系无铅焊锡的研制[D].长沙:中南大学, 2004.
    [9]虞自基.环境中微量重金属元素的污染危害迁移转移[M].北京:科学出版社, 1987. 18~25.
    [10] Bill Trumble. Get the Lead out. IEEE Spetrum. 1998: 55~60.
    [11] Bannos T S. Lead-Free Solder to Meet New Drinking Water Regulations[J]. Welding Journal, 1988: 23~26.
    [12]邬博义,吴懿平,张乐福,等.新一代绿色电子封装材料[J].微电子学, 2002, 32(5): 357~361.
    [13]中华人民共和国信息产业部、国家发展和改革委员会、商务部、海关总署、国家工商行政管理总局、国家质量监督检验检疫总局、国家环境保护总局(第39号)令.电子信息产品污染控制管理办法[EB/OL]. 2006-02-28. http://www.mii.gov.cn/art/2006/03/02/art_521_7344.html.
    [14]电子信息产品污染控制管理办法[EB/OL]. http://www.rohscn.com/document/r13.pdf, 2006.
    [15] Katsuaki Suganuma. Advances in lead-free electronics soldering[J]. Current Opinion in Solid State and Materials Science, 2001, (5): 55~64.
    [16] Official Journal of the European Union. Directive 2002/96/EC of the European Parliamentand of the Council of 27 January 2003[R]. Waste Electrical and Electronic Equipment(WEEE), 2003, L37: 24~38.
    [17] Sundelin J J. Mechanical and micro structural properties of SnAgCu Solder joints[J]. Material Science and Engineering A, 2006, 420(1-2): 55~62.
    [18] Official Journal of the European Union. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003[R]. the Restriction of the use of certain Hazardous Substances in electrical and electronic equipment, 2003, L37: 19~23.
    [19] IPC roadmap: A guide for assembly of lead-free electronics 4th draft[R]. Sanders road, northbrool, 2000, (2):215.
    [20]贾红星,刘素芹,黄金亮,张柯柯.电子组装用无铅钎料的研究进展[J].材料开发应用, 2003, 18(5): 42~45.
    [21] Zhao J, Miyashita Y, Mutoh Y. Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder[J]. International Journal of Fatigue, 2001, 23: 723~731.
    [22] Villain J, Brueller O S, Qasim T. Creep behaviour of lead free and lead containing solder materials at high homologous temperatures with regard to small solder volumes[J]. Sensors and Actuators, 2002, 99A: 194~197.
    [23] Wang L, Yu D Q, Zhao J, et al. Improvement of wettability and tensile property in Sn-Ag-RE lead-free solder alloy[J]. Materials Letters, 2002, 56: 1039~1042.
    [24]马鑫,董本霞.无铅焊料发展现状[J].电子工艺技术, 2002, 23(2): 47~52.
    [25] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology[J]. Materials Science and Engneering, 2002, 38R: 55~105.
    [26] Anderson I E, Cook B A, Harringa J L, et al. Sn-Ag-Cu Solders and Solder Joints: Alloy Development, Microstructure, and Properties[J]. Journal of the Minerals, Metals and Materials Society, 2002, 54(6): 26~29.
    [27]曹昱,易丹青,王颖,等. Sn-Ag基无铅焊料的研究进展[J].四川有色金属, 2001, (3): 5~12.
    [28]戴志峰,黄继华.微电子组装中-Zn系无铅钎料的研究开发[J].电子工艺技术, 2004, 25(1): 5~8.
    [29] Hirano T. Reliability of lead free solder joint by using chip size package[C]. IEEE international symposium on electronics and the environment, 2001: 285~289.
    [30] Vaynman S, Fine M E. Development of fluxes for lead-free solders containing zinc[J].Scripta Materialia, 1999, 41(12): 1269~1271.
    [31] Vianco P T, Regent J A. Properties of ternary Sn-Ag-Bi solder alloys: part II-wettability and mechanical properties analyses[J]. Journal of Electronic Materials, 1999, 28(10): 1138~143.
    [32]王国勇,刘晓波. Sn-Zn系电子无铅软钎料湿润性能的研究[J].四川大学学报(工程科学版), 2001, 33(5): 66~68.
    [33]马鑫,方洪渊,董秀丽,等. Sn-Zn-In软钎料合金初步研究[J].电子工艺技术, 1996, (5): 28~35.
    [34]孟桂萍. Sn-Ag和Sn-Zn及Sn-Bi系无铅焊料[J].电子工艺技术, 2002, 23(2): 75~76.
    [35]王磊.无铅焊锡开发研究的动向[J].材料冶金学报, 2002, 1(1): 9~14.
    [36] Glazer J. Metallurgy of low temperature Pb-free solders for electronics assembly[J]. International Materials Reviews, 1995, 40(2): 65~93.
    [37]薛松柏,赵振清,钱乙余,等.无铅钎料的超电势问题研究[J].焊接学报, 1999, 20(3): 175~178.
    [38]汤清华,潘晓光, Wu C M L,等.添加Sn-Ag对Sn-Bi焊接特性的改善[J].电子元件材料, 1999, 18(4): 27~31.
    [39]美国焊接学会钎焊委员会.软钎焊手册[M].崔殿亨,译.北京:机械工业出版社, 1987. 246~301.
    [40]郑玉军,张启运. Sn-In-Zn三元系相图和无铅钎料成分的探讨[J].物理化学学报, 1998, 14(12): 1098~1103.
    [41] Sigelko J D, Subramanian K N. Overview of lead-free solders[J]. Advanced Materials and Processes, 2000, 157(3): 47~48.
    [42] McCabe R J, Fine M E. Athermal and thermally activeated plastic flow melting temperature solders at small stresses[J]. Scripta Materialia, 1998, 39(2): 189~195.
    [43] Kazuhiro N, Jonathan R, Tetsuro N, et al. Microstructure control in Sn-0.7mass%Cu alloys[J]. Materials Transactions, 2005, 46(11): 2419~2425.
    [44] Nishikawa H, Piao J Y, Takemoto T. Microstructure of interface between Sn-Cu solder with Ni and Cu plate[J]. Journal of the Japan Institute of Metals, 2006, 70(5): 427~433.
    [45] Nishimura T. Lead-free solder alloy[P]. US patent: US6180055, 2001.
    [46]徐光宪.稀土(第二版)下册[M].北京:冶金工业出版社, 2002. 26~38.
    [47]罗洪军.合金元素对SnPb60/40钎料高温持久强度影响研究[D].哈尔滨:哈尔滨工业大学, 1991.
    [48]朱颖.混合稀土RE锡铅软钎焊接头高温持久强度的研究[D].哈尔滨:哈尔滨工业大学, 1992.
    [49]朱颖.锡铅稀土钎料SMT焊点热循环失效机制研究[D].哈尔滨:哈尔滨工业大学, 1996.
    [50] Ma Xin, Qian yi yu, Yoshida F. Effect of Rare Earth on solidification Microstructure and High Temperature Mechanical Property of Sn60-Pb40 Solder Alloy[J]. Journal of Rare Earths, 2000, 18(4): 289~292.
    [51]马鑫.微电子表面组装焊点失效的相关力学及金属学因素分析[D].哈尔滨:哈尔滨工业大学, 2000.
    [52] Wu C M L, Yu D Q, Law C M T, et al. The properties of Sn-9Zn Lead-free solder alloys doper with trace rare earth elements[J]. Journal of Electronic Materials, 2002, 31(9): 921~927.
    [53] Wu C M L, Yu D Q, Law C M T, et al. Microstructure and mechanical properties of new lead-free Sn-Cu-RE solder alloys[J]. Journal of Electronic Materials, 2002, 31(9): 928~932.
    [54] Chi-Won Hwang, Jung-Goo Lee, Katsuaki Suganuma, et al. Interfacial micro-structure between Sn-3Ag-XBi alloy and Cu substrate with or without electrolytic Ni plating[J]. Journal of electronic materials, 2003, 32(2): 52~62.
    [55] Miric A Z, Grused A. Lead-free Alloys[J]. Solding & Surface Mount Technology, 1998, 10(1): 19~25.
    [56] JEDEC standard: JESD22-A104-B, Temerature cycling, 2000.
    [57]况延香.迈向新世纪的微电子封装技术[J].电子工艺技术, 2001(1): 1~6.
    [58]朱志昂.物理化学教程[M].湖南:湖南教育出版社, 1991. 37~51.
    [59]徐国华,袁靖.常用热分析仪器[M].上海:上海科学技术出版社, 1990. 58~72.
    [60]陈志刚,史耀武,夏志东.微量混合稀土对SnAgCu钎料合金性能的影响[J].电子工艺技术, 2003, 24(2): 53~58.
    [61]李梦,吉涛,刘晓波,等. Sn-Zn-Bi-Ag系钎料物理性能研究[J].电子元件材料, 2004, 23(11): 49~51.
    [62] Hirschhorn I S. Recent applications of the rare earth metals in nonferrous metallurgy[J]. J Metal, 1970, 22(10): 40~41.
    [63]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社, 1998. 490~492.
    [64]王春青,李明雨,田艳红,等. JIS Z 3198无铅钎料试验方法简介评述[J].电子工艺技术, 2004, 25(2): 47~54.
    [65]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社. 2006. 40~46.
    [66] Vincent J H, Richards B P, Wallis D R, et al. Alternative solders for electronics assemblies[J]. Circuit World, 1993, 19(3): 32~34.
    [67]薛松柏,吴玉秀,崔国平,等.热循环对QFP焊点抗拉强度及其微观组织的影响[J].焊接学报, 2006, 27(11): 1~4.
    [68] XUE Songbai, WANG Hui, HU Yongfang. Effects of thermal cycling on soldering joints’shear strength of laminar ceramic resistor[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(S3): 305~310.
    [69]王薇,王中光,冼爱平,等. CBGA结构热循环条件下无铅焊点的显微组织和断裂[J].金属学报, 2006, 42(6): 647~652.
    [70] GJB 548A-96.微电子器件试验方法和程序[S].北京:国防工业出版社, 1996.
    [71] Qi Y, Lam R, Ghorbani H R, et al. Temperature profile effects in accelerated thermal cycling of SnPb and Pb-frees solder joints[J]. Microelectronics Reliability 2006, 46(2-4): 574~588.
    [72]薛松柏,韩宗杰,王慧,等.矩形片状元件无铅焊点断裂机制[J].焊接学报, 2006, 27(8): 23~26.
    [73]周公度,段连运.结构化学基础[M].第3版.北京:北京大学出版社, 2002. 281~295.
    [74]薛松柏,钱乙余,赵振清,等.银基钎料中铈杂质元素铅、铋作用机制[J].中国稀土学报, 2002, 20(5): 436~439.
    [75]薛松柏,陈燕,吕晓春. Sn-Ce-Me无铅钎料合金活度相互作用系数的计算及应用[J].焊接学报, 2005,26(4): 45~47.
    [76]陈存中.有色金属熔炼铸锭[M].北京:冶金工业出版社, 1987. 153~160.
    [77]肖克来提,杜黎光,孙志国,等. SnAgCu表面贴装焊点在时效和热循环过程中的组织及剪切强度变化[J].金属学报, 2001, 37(4): 439~444.
    [78]华彤,王珺,俞宏坤,等. BGA封装中含Bi, Ni的无铅焊球剪切强度研究[J].复旦学报:自然科学版, 2006, 45(4): 489~494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700