用户名: 密码: 验证码:
重庆市生活污染源产排污系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国务院于2006年第4季度至2009年开展第一次全国污染源普查,普查的基本内容包括工业源、城镇生活源和农业源。利用此契机,重庆市展开了生活污染源产排污系数的研究。产排污系数法作为测定生活源污染物产生量和排放量、真实反映环境状况的基本技术方法,产排污系数的测算具有极为重要的现实意义和实用价值。
     生活源产排污系数研究主要选取了重庆市具有代表性的城镇居民生活区、住宿业、餐饮业、洗浴业、美容美发业、洗染业、洗车业、医院为研究对象,于2007年9月至2008年3月分四期对研究对象的废水排放量、污染物浓度进行现场实测,同时利用统计学方法,制定了生活源废水排放系数以及污染物的产排污系数。得出的主要结论如下:
     ①通过重庆市生活源产排污系数的研究,制定了居民小区、机关单位、住宿业、餐饮业、美容美发业、洗浴业、洗染业、洗车业、医院的产排污系数。
     ②不同污染物具有明显的行业特征。基于不同污染物浓度系数的分析,得出COD浓度值由高至低排列顺序为:餐饮业>居民小区>住宿业>洗染业>美容美发业>洗浴业>机关单位>洗车业>医院;总氮浓度值由高至低排列顺序为:居民小区>医院>餐饮业>住宿业>机关单位>洗浴业>美容美发业>洗染业;总磷浓度值由高至低排列顺序为:餐饮业>居民小区>住宿业>机关单位>医院>洗染业>美容美发业>洗浴业>洗车业。
     ③重庆市生活污染源的主要污染物为COD。通过不同污染源污染当量负荷比分析,得出居民生活区、第三产业(餐饮业除外)、医院的主要污染物为COD,餐饮业的主要污染物为动植物油和COD。
     ④本次第三产业系数研究工作与已有系数研究相比,在监测指标上更为全面,增加了氨氮、总氮、总磷、铅、汞等指标。
     ⑤在核算污染物的排放总量时,以浓度系数作为第一系数。人均系数、硬件系数是浓度系数的二次换算,在换算过程中受人均废水排放量、单位硬件废水排放量的影响,由浓度系数换算得到的人均系数、硬件系数其偏差可能会较大。
     ⑥住宿业废水排放、污染物排放有明显的时段性特点。住宿业用水高峰为早晨9点至中午12点以及晚上19点以后。COD浓度变化规律与废水排放规律相似,浓度峰值为246mg/L。动植物油峰值出现在中午时段,浓度峰值为2.22mg/L,氨氮、总氮浓度最大值出现在早晚阶段。
     ⑦餐饮业废水排放、污染物排放有明显的时段性特点。餐饮业用水高峰期为上午9点至下午13点以及晚上18点至20点。COD、动植物油变化规律与废水排放规律相似,在用餐高峰期出现浓度峰值,浓度峰值分别为3420mg/L、93mg/L。总磷浓度峰值出现在洗涤餐具阶段,其余时间段变化平稳。
     ⑧重庆市生活污染源产排污系数的确定,为核算各污染源主要污染物的排放总量提供了简便的方法。只要能够获得年用水量,即可利用浓度系数加以简单运算,从而核算出主要污染物的排放量。对于不能准确获知年用水量的污染源,可以采用人均系数或硬件系数核算污染物排放总量。
From the fourth quarter of 2006 to the year of 2009, the first national pollution sources sensus has been launching by the State Council. The basic content includes industrial source, domestic source and agricultural source. On that basis, The pollution generation coefficient and discharge coefficient of domestic source have been studied in Chongqing. Because the method of pollution generation and discharge coefficient is a fundament to calculate the amount of pollution, so calculation of pollution generation and discharge coefficient is of great importance.
     The study comprised residential areas, lodging, catering, bath, beauty salons, laundry, car-washing and hospital. The monitoring perid is divided into four phases. It is frorm September 2007 to March 2008 to monitor wastewater discharge and pollution concentration. And at the same time, it is maked the pollution generation and discharge coefficient by the method of mathematical statistic. The main conclusions are as follows:
     ①It has determined the pollution generation coefficient and discharge coefficient of residential areas, lodging industry, catering industry, bath industry, beauty salons industry, laundry industry, car-washing industry and hospital by the study of domestic pollution source.
     ②Different pollutants have obvious characteristics of industries. Based on the analysis of pollutants concentration coefficient, it has drew the conclusion that the order of COD concentration is: catering industry> residential areas>lodging industry >laundry industry >beauty salons industry >bath industry industry >government units >car-washing industry> Hospital. The order of total nitrogen concentration is: residential areas> hospital>catering industry >lodging industry >government units >bath industry > beauty salons industry > laundry industry. The order of total phosphorus concentration is: catering industry> residential areas> lodging industry> government units >Hospital> laundry industry> beauty salons industry> bath industry industry> car-washing.
     ③The primary pollutant of domestic pollution sources in Chongqing is COD. By analysis on load ration of equivalent of different sources, it is concluded that the primary pollutant of residential areas, tertiary industry (exclude catering industry) and hospital is COD and the primary pollutants of catering industry are animal and vegetable oils and COD.
     ④The monitoring indexes of the tertiary industry of this study are more comprehensive than ever. The new indexs include ammonia nitrogen, total nitrogen, total phosphorus,lead and mercury.
     ⑤The concentration coefficient is as the first coefficient when accounting the total discharge amount of pollutants. The percapital coefficient and the hardware coefficient are the two times transfer of the concentration coefficient. They are influenced by percapital wasterwater discharge and unit hardware wastewater discharge. The deviation of the percapital coefficient and the hardware coefficient may lead to relatively large errors.
     ⑥The wastewater discharge and pollutant discharge of lodging industry have the obvious characteristic of periods. The water peak period is 9:00 to 12:00 am and after 7:00 pm. The change law of COD is similar with wastewater. The concentration peak of COD is 246mg/L. The concentration peak of animal and vegetable oils is 2.22mg/L. The highest concentration of ammonia nitrogen, total nitrogen is in the morning and evening.
     ⑦The wastewater discharge and pollutant discharge of catering industry have the obvious characteristic of periods. The water peak period is 9:00 am to 1:00 pm and 6:00 pm to 8:00 pm. The change laws of COD and animal and vegetable oils are similar with wastewater. The concentration peak is respectively 3420mg/L, 93mg/L. The concentration peak of total phosphorus is at the wash stage. It changes smoothly at the rest of the time.
     ⑧The determination of pollution generation coefficient and discharge coefficient provides a simple method to count the total discharge amount of pollutants. As long as knowing the annual water consumption, it could count the total discharge amount by simple calculation. It also could use percapital coefficient and hardware coefficient to calculate the total discharge amount when it doesn’t know the annual water consumption of pollution source.
引文
[1] Mark W. Skinner, Alun E. Joseph and Richard G. Kuhn. Social and environmental regulation in rural China: bringing the changing role of local government into focus [J]. Geoforum, 2003, 34(2):267~281.
    [2] Christina Hirche. China's environment, today and tomorrow[J].World Pumps, 2004:42~44.
    [3] Yoshiaki Tsuzuki. Relationships between water pollutant discharges per capita (PDCs) and indicators of economic level, water supply and sanitation in developing countries [J]. Ecological Economics, 2008, 1(68)273~287.
    [4]蔺栋华.我国第三产业发展中的环境代价与对策[J].福建论坛. 2000, 215:19~13.
    [5]李锦菊.排放系数法估算污染物排放总量[J].环境导报.1999,(1):36~37.
    [6]萧瑛,宋治华,艾萍.水泥生产中污染物产生和排放系数的研究[J].中国建材科技. 1996, 4(5): 31~37.
    [7] Kun-min Zhang, Zong-guo Wen. Review and challenges of policies of environmental protection and sustainable development in China [J]. Journal of Environmental Management, 2008, 4(8): 49~61.
    [8]龚明,崔军.南通市第三产业排污系数的确定[J].环境科学与技术,2006,29:95~96.
    [9]张世东.扬州市第三产业水污染物排放系数研究[D].中国优秀博硕士学位论文全文数据库(硕士),2005,(12).
    [10]陈刚宁,潘烁.广东省第三产业排污系数(第一批)的确定[J].中国环境监测,2005,21(1).
    [11]周灵辉,袁洁.饮食娱乐业废水排放及排污收费系数的讨论[J].污染防治技术.2003,16(1):24~26.
    [12]周灵辉.南京市小型餐饮娱乐服务业废水排放系数计算[J].环境监测管理与技术.2004,16 (3):38~40.
    [13]郭卫,李冬果,魏炳璋,侯俊玲.医院排污水流量测量[J].医疗设备信息研究与革新.1999(3):24~25.
    [14]叶晓盈,霍鲁宁,顾伟.医疗废物排放统计变量的选择及排放系数的确定[J].污染防治技术.2006,19(3):15~16.
    [15] GB50014-2006.室外排水设计规范[S].北京:中国标准出版社,2006.
    [16]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2001:14~16.
    [17]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2002:14~17.
    [18]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2003:13~17.
    [19]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2004:14~16.
    [20]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2005:13~17.
    [21]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2006:12~16.
    [22]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2007:13~17.
    [23] Arnaldo Sarti, Marcelo Loureiro Garcia, Marcelo Zaiat and Eugenio Foresti. Domestic sewage treatment in a pilot-scale anaerobic sequencing batch biofilm reactor (ASBBR) [J]. Resources, Conservation and Recycling, 2007, 51(1):237~247.
    [24]曾庆均.重庆市都市区产业发展:历史、现状与趋势[J].上海经济研究. 2005,6:61~66.
    [25] Mohammad Al-Shayah, Nidal Mahmoud. Start-up of an UASB-septic tank for community on-site treatment of strong domestic sewage[J]. Bioresource Technology, 2008, 16(9):58~66.
    [26] GB8978-1996.污水综合排放标准[S].北京:中国标准出版社,1996.
    [27] Jun Nakajima, Yoko Fujimura, Yuhei Inamori. Performance evaluation of on-sitetreatment facilities for wastewater from households, hotels and restaurants[J]. Water Science and Technology, 1999, 8(39):85~92.
    [28] Uwe Stoll, Hani Gupta. Management strategies for oil and grease residues[J]. Waste Management & Research, 1997, 1(15):23~32.
    [29] Toru Matsui, Akira Miura, Toshio Iiyama, Naoya Shinzato, Hitoshi Matsuda, Keizo Furuhashi. Effect of fatty oil dispersion on oil-containing wastewater treatment [J]. Journal of Hazardous Materials, 2005, 3(118): 255~258.
    [30] Arnaldo Sarti, Bruna S. Fernandes, Marcelo Zaiat and Eugenio Foresti. Anaerobic sequencing batch reactors in pilot-scale for domestic sewage treatment[J]. Desalination, 2007,216(1~3):174~182.
    [31]杨柳.我国餐饮业的市场现状及发展策略研究[J].北京交通大学学报. 2006, 3(5): 69~71.
    [32] Xueming Chen, Guohua Chen, Polock Yue. Separation of pollutants from restaurant wastewater by electrocoagulation [J]. Separation and Purification Technology, 2000,19: 65~76.
    [33]贾随堂,汤力同.餐饮业含油污水处理技术与设备[J].环境污染治理技术与设备,2002,3(11):74~77.
    [34] N.G. Wakelin, C.F. Forster. The Aerobic Treatment of Grease-Containing Fast Food Restaurant Wastewaters [J]. Process Safety and Environmental Protection, 1998, 1(76):55~61.
    [35] Xueming Chen, Guohua Chen, Po Lock Yue. Separation of pollutants from restaurant wastewater by electrocoagulation[J]. Separation and Purification Technology, 2000, 2(19):65~76.
    [36]姚忠伟,刘大维,张学智.城市第三产业发展对环境的污染影响[J].环境保护科学.2005,5:22~23.
    [37]谢晖,刘巧茹,赵洁,刘杨.我国洗车业污染状况研究[J].大众科技. 2008, 5:102~103.
    [38]杨国艳,吕玉亲,王苏玲.中小城市洗浴餐饮业的环境污染纠纷问题探讨[J].环境科学与技术. 2005,28:30~32.
    [39]薛罡,赵洪宾,刘胜利.洗浴废水超滤膜处理回用技术研究[J].哈尔滨建筑大学学报. 2000,6(33):66~69.
    [40] Puangrat Kajitvichyanukul and Nattapol Suntronvipart. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method [J]. Journal of Hazardous Materials, 2006, 138(2):384~391.
    [41] GB18466-2005.医疗机构水污染物排放标准[S].北京:中国标准出版社,2005.
    [42] Ajay Kumar Gautam, Sunil Kumar, P.C. Sabumon. Preliminary study of physico-chemical treatment options for hospital wastewater [J]. Journal of Environmental Management, 2007, 3(83):298~306.
    [43]常丽春,王凯军.我国医院污水处理现状分析及发展趋势探讨[J].城市管理与科技.2004,6(3):108~110.
    [44] Mukesh Doble, Anil Kumar. Treatment of Waste from Food and Dairy Industries[J]. Biotreatment of Industrial Effluents, 2005: 183~187.
    [45] Tieheng Sun, Yaowu He, Ziqing Ou. Treatment of domestic wastewater by an underground capillary seepage system [J]. Ecological Engineering, 1998, 4(11):111~119.
    [46] Andreas D. Andreadakis. Organic matter and nitrogen removal by an on site sewage treatment and disposal system [J]. Water Research, 1987, 5(21): 559~565.
    [47] J. Huang, R. B. ReneauJr, C. Hagedorn. Nitrogen removal in constructed wetlands employed to treat domestic wastewater [J]. Water Research, 2000, 9(34): 82~88.
    [48]马瑞巧,郭静.餐饮业含油污水除磷脱氮处理方法研究探讨[J].天津化工. 2007,5(21):53~56.
    [49]孙华,梁伟.我国水体磷污染及其控制管理技术的研究[J].浙江师范大学学报. 2007,2(30):202~205.
    [50] Lars Pallesen, P. M. Berthouex, Keith Booman. Environmental intervention analysis: Wisconsin's ban on phosphate detergents [J]. Water Research, 1985, 3(19): 353~362.
    [51]阚平,李崇明,吕平毓等.重庆市“禁磷”绩效评估[J].长江流域资源与环境. 2007, 1(16): 62~65.
    [52] Bossard P, Gachtre R. Controversial hypothesis related to the ban phosphates: was banning phosphates in detergents a mistake? [J]. EAWAG News, 1997, 42: 20~22.
    [53]马红梅,朱志良.表面活性剂在化学清洗中的应用及研究进展[J].清洗世界. 2005,4(21):22~27.
    [54]杨展里.有害当量为基准的水污染总量收费标准研究[J].环境科学研究. 1995, 1(8):35~39.
    [55]陈新学,王万宾,陈海涛等.污染当量数在区域现状污染源评价中的应用[J]. 2005, 3(17): 41~43.
    [56]仝川.环境污染当量概念与陆地水域水污染指数的构造[J].内蒙古环境保护. 1996,2(11):8~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700