用户名: 密码: 验证码:
基于电沉积表面的超疏水、超亲水以及pH响应表面的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于超分子组装的思想,本论文设计合成了外围为羧基的树枝状硫醇分子,以树枝状硫醇分子自组装膜作为模板,通过电沉积技术与化学修饰相结合来制备不同浸润性质的表面。
    本论文开展了以下几个方面的工作:
    (1)用内向收敛法合成了外围含羧基的二代聚苄醚树枝状硫醇分子,同时设计了一种pH响应分子,通过核磁、质谱、红外等手段证实合成了目标化合物。并对它们在金上的自组装单层膜进行了表征。
    (2)将树枝状分子自组装单层膜作为模板,与电沉积技术相结合制备了具有金微纳米结构的粗糙表面。并对具有金微纳米结构的粗糙表面进行了表征。通过之后修饰不同化学物质的方法,制备出不同浸润性质的表面,如超疏水、超亲水表面。
    (3)制备的具有金微纳米结构的粗糙表面,通过修饰pH响应分子的方法,制备出pH响应表面,如在pH=1时为接近超疏水表面,在pH=13时为超亲水表面。进一步通过在金粗糙表面上修饰pH响应分子混合膜的方法,可以制备更大响应范围的pH响应表面,在pH=1时为超疏水表面,在pH=13时为超亲水表面。
In this thesis we attempt to synthesis a kind of carboxyl-terminated dendronthiol, combining the electrodeposition on such molecular monolayer as thetemplate and the chemical modification together to fabricate the surfaces withdifferent wettabilities.
     Chapter one of this thesis is the introduction of some basic concepts ofself-assembled monolayer, dendrimer, surface wettablities (e.g.superhydrophobic and superhydrophilic surfaces), and some progress in the fieldof smart surface and pH responsive surface.
    In Chapter two, by using the convergent method introduced by C. J. Hawkerand J. M. J. Fréchet, we synthesized a kind of second generation ester-terminatedpoly (benzyl ether) dendron with benyl bromide at the focal point, which wasdonoted as (CH3OOC)4-[G-2]-Br. Such compound as the starting materials, firstreacted with thioacetic acid. After the hydrolysis of the terminal ester group andthe ester at the focal point, we get the target compound, (HOOC)4-[G-2]-SH.Such compound is confirmed with NMR, MS, IR. We also use XPS, STM, CA,IR to characterize the self-assembled monolayer of such molecule. To excludethe multilayer adsorption of (HOOC)4-[G-2]-SH by hydrogen bonding, werinsed the SAM sequently using a large amount of ethanol, 10% acetic acidethanolic solution, a large amount of ethanol, then dried in nitrogen. Rinsingwith only ethanol may cause the physical adsorption, or multilayer adsorption.The experimental results suggested that (HOOC)4-[G-2]-SH adsorbed on goldsurface through monolayer, but multilayer. XPS data suggested that(HOOC)4-[G-2]-SH chemisorbed on gold surface, forming Au-S bond. STM data
    indicated that the SAM contain many defects, we speculate such defect should bethe defect of the monolayer by STM section analysis and Cerius2 simulation.Then using the dendron thiol self-assembled monolayer as the template, we usethe electrodeposition method to fabricate the gold rough surface with goldnanostructures. We use SEM, AFM, CV to characterize the gold rough surfacewith gold nanostructures. The result suggested that, surface roughness graduallyincreased with the increased electrodeposition time. The morphology of theelectrodeposited gold nanostructures can be adjusted by the electrodepositionpotential. We use different SAM as the template for electrodeposition. The datasuggested that (HOOC)4-[G-2]-SH SAM provided a good template to fabricategold rough surface with gold nanostructures, AFM data revealed that the surfaceroughness gradually increased with the increased electrodeposition time, whichis confirmed by the electrochemical results.In Chapter three, By the post chemical modification with different chemicalmaterials, we can fabricate the surfaces with different wettabilities, after themodification with C12-SH, the CA of such surface increased with the increasedelectrodeposition time,from less hydrophobic to superhydrophobic properties.To elucidate the origin of the above-mentioned superhydrophobicity, we useCassie equation to explain that. TA reflect the CA hysteresis, it decreased withthe increased electrodeposition time and surface roughness. It agrees well withthe Johnson and Dettre 's simulation work,they believed that CA hysteresisincreseded with the increased surface roughness in low roughness region;Whilerapidly decreased with the increased surface roughness when the roughness isquite large. We also investigate the relation of the CA on Cn-SH modified
    surface and the values of chain length n. After the chemical modification withHO-C11-SH, the surface became superhydrophilic, and the water droplet spreadquickly on such surface. To elucidate the origin of the above-mentionedsuperhydrophilicity, we use Cassie hemiwicking model to explain that. Wedesigned a kind of pH responsive molecule, MUABA. The NMR,MS,IR dataconfirmed that target compound. We also use XPS, STM, CV, IR to characterizethe self-assembled monolayer of such molecule, MUABA on gold surface. Weuse the XPS to study the elemental composition and element binding energy ofMUABA SAM, which provide further evidences that the MUABA moleculesadsorbed on gold surface. STM images suggested SAM contain many defects,which is likely the Au vacancy island,as the average depth of such defects isabout 0.24 nm, according to the STM section analysis. CV data confimed thecompact MUABA monolayer with strong blocking effect for the electron transferis formed on gold surface. IR data suggested that, in MUABA SAM treated withpH = 1 solution, the hydrogen bonded and free carboxyl groups are coexisted.After the treatment of pH = 13 solution,there is no –COOH groups in MUABASAM any more,the –COOH group is deprotonized;from the surface energy dataand observed wettabilities, we speculate that under pH = 1 condition, thebenzene ring (nonpolar) group are likely to locate at the outermost surfacecontacted with the water in the MUABA SAM, in that case, under pH = 1condition, the dispersive component of surface energy predominated. Under pH= 13 condition, the carboxyl group ionized, may cause the induced alignment ofmonolayer,and let the carboxylate group contact with water, in that case, thepolar component of surface energy predominated. Further result of CA and
    surface energy analysis suggested that MUABA monolayer on gold surface showpH responsiveness. By the chemical modification of such pH responsivemolecule onto the gold rough surface with gold nanostructures discussed in theChapter two, we fabricate the pH responsive surface, e.g. near superhydrophobicsurface under pH=1 condition, and superhydrophilic surface under pH=13condition. We also use the MUABA mixed monolayer to modify the gold roughsurface, to fabricate more large-scale pH responsive surface, superhydrophobicsurface under pH = 1 condition, superhydrophilic surface under pH = 13condition. We use XPS to study the different amount of MUABA adsorbed onrough and flat gold surface. According to the ratio of XPS atomic concentrationof C to N, i.e. using the C/N value, we can calculate the different MUABA in themixed monolayer on rough and flat gold surface (molar ratio) are 53.6% and18.7%, respectively. Comparing with the MUABA amount in the assemblysolution (MUABA 33%, polar ratio), the amount of MUABA on the roughsurface is increased,about 53.6%;while the amount of MUABA on the flatsurface is decreased,about 18.7%. That may be due to the fact that on roughgold surface MUABA are easier than C10-SH to adsorb on the substrate surface.And the concentration of MUABA in the mixed monolayer is diluted by C10-SH,which may benefit the conformation change of MUABA, as the pH responsivemolecule may need enough free room in the monolayer to change itsconformation under different pH conditions.We believe that such above-mentioned superhydrophobic, superhydrophilic,pH responsive surfaces can be used in many applications in the near future.
引文
[1] K. B. Blodgett, I. Langmuir, Built-Up Films of Barium Stearate and Their Optical Properties, Phys. Rev. 1937, 51, 964.
    [2] G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 1997, 277, 1232.
    [3] J. Sagiv, Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces, J. Am. Chem. Soc. 1980, 102, 92.
    [4] R. G. Nuzzo, F. A. Fusco, D. L. Allara, Spontaneously Organized Molecular Assemblies. 3. Preparation and Properties of Solution Adsorbed Monolayers of Organic Disulfides on Gold Surfaces, J. Am. Chem. Soc. 1987, 109, 2358.
    [5] A. Ulman,Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 1996, 96, 1533.
    [6] G. M. Whitesides, P. E. Laibinis, Wet Chemical Approaches to the Characterization of Organic Surfaces: Self-Assembled Monolayers, Wetting, and the Physical-Organic Chemistry of the Solid-Liquid Interface, Langmuir 1990, 6, 87.
    [7] S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Sensor Functionalities in Self-Assembled Monolayers, Adv. Mater. 2000, 12, 1315.
    [8] A. W. Bosman, H. M. Janssen, E. W. Meijer, About Dendrimers: Structure, Physical Properties, and Applications, Chem. Rev. 1999, 99, 1665.
    [9] M. Fischer, F. V?gtle, Dendrimers: From Design to Application–A Progress Report, Angew. Chem. Int. Ed. 1999, 38, 884.
    [10] F. Zeng, S. C. Zimmerman, Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly, Chem. Rev. 1997, 97, 1681.
    [11] S. M. Grayson, J. M. J. Fréchet, Convergent Dendrons and Dendrimers: from Synthesis to Applications, Chem. Rev. 2001, 101, 3819.
    [12] C. J. Hawker, J. M. J. Fréchet, Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules, J. Am. Chem. Soc. 1990, 112, 7638.
    [13] C. J. Hawker, J. M. J. Fréchet, A New Convergent Approach to Monodisperse Dendritic Macromolecules, J. Chem. Soc., Chem. Commun. 1990, 1010.
    [14] M. L. Mansfield, Molecular Weight Distributions of Imperfect Dendrimers, Macromolecules 1993, 26, 3811.
    [15] D. C. Tully, K. Wilder, J. M. J. Fréchet, A. R. Trimble, C. F. Quate, Dendrimer-Based Self-Assembled Monolayers as Resists for Scanning Probe Lithography, Adv. Mater. 1999, 11, 314.
    [16] A. Friggeri, H. Sch?nherr, H.-J. van Manen, B.-H. Huisman, G. J. Vancso, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, Insertion of Individual Dendrimer Molecules into Self-Assembled Monolayers on Gold: A Mechanistic Study, Langmuir 2000, 16, 7757.
    [17] C. B. Gorman, R. L. Milller, K.-Y. Chen, A. R. Bishop, R. T. Haasch, R. G. Nuzzo, Semipermeable, Chemisorbed Adlayers of Focally-Substituted Organothiol Dendrons on Gold, Langmuir 1998, 14, 3312.
    [18] L. Zhang, F. Huo, Z. Wang, L. Wu, X. Zhang, S. H?ppener, L. Chi, H. Fuchs, J. Zhao, L. Niu, S. Dong, Investigation into Self-Assembled Monolayers of a Polyether Dendron Thiol: Chemisorption, Kinetics, and Patterned Surface, Langmuir 2000, 16, 3813.
    [19] L. Zhang, B. Zou, B. Dong, F. Huo, X. Zhang, L. Chi, L. Jiang, Self-Assembled Monolayers of New Dendron-Thiols: Manipulation of the Patterned Surface and Wetting Properties, Chem. Commun. 2001, 1906.
    [20] B. Dong, F. Huo, L. Zhang, X. Yang, Z. Wang, X. Zhang, S. Gong, J. Li, Self-Assembled Monolayers of Novel Surface-Bound Dendrons: Peripheral Structure Determines Surface Organization, Chem. Eur. J. 2003, 9, 2331.
    [21] Z. Bo, L. Zhang, X. Zhang, J. Shen, S. H?ppener, L. Chi, H. Fuchs, Self-assembled Monolayers of Dendron-thiol on Solid Substrate, Chem. Lett. 1998, 1197.
    [22] M. Yang, E. M. W. Tsang, Y. A. Wang, X. Peng, H.-Z. Yu, Bioreactive Surfaces Prepared via the Self-Assembly of Dendron Thiols and Subsequent Dendrimer Bridging Reactions, Langmuir 2005, 21, 1858.
    [23] A. W. Adamson, Physical Chemistry of Surfaces, John&Sons, New York, 1990.
    [24] M. C. Phillips, A. C. Riddiford, Temperature Dependence of Contact Angles, Nature 1965, 205, 1005.
    [25] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The Lowest Surface Free Energy Based on -CF3 Alignment, Langmuir 1999, 15, 4321.
    [26] R. Blossey, Self-Cleaning Surfaces-Virtual Realities, Nat. Mater. 2003, 2, 301.
    [27] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-Water-Repellent Fractal Surfaces, Langmuir 1996, 12, 2125.
    [28] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. ?ner, J. Youngblood, T. J. McCarthy, Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir 1999, 15, 3395.
    [29] Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Thin Films with Nanotextures for Transparent and UltraWater-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD, Chem. Vap. Deposition 2002, 8, 47.
    [30] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super Oil-Repellent Surfaces, Angew. Chem. Int. Ed. 1997, 36, 1011.
    [31] K. Tadanaga, N. Katata, T. Minami, Formation Process of Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method, J. Am. Ceram. Soc. 1997, 80, 3213.
    [32] A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission, Thin Solid Films 2000, 376, 140.
    [33] J. Bico, C. Marzolin, D. Quéré, Condensed Matter: Structure, Mechanical and Thermal Properties-Pearl Drops, Europhys. Lett. 1999, 47, 220.
    [34] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir 2000, 16, 5754.
    [35] A. Nakajima, A. Fujishima, K. Hashimoto, K. Hashimoto, T. Watanabe, Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate, Adv. Mater. 1999, 11, 1365.
    [36] L. Feng, Z. Yang, J. Zhai, Y. Song, B. Liu, Y. Ma, Z. Yang, L. Jiang, D. Zhu, Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values, Angew. Chem. Int. Ed. 2003, 42, 4217.
    [37] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface, J. Am. Chem. Soc. 2004, 126, 3064.
    [38] S. Herminghaus, Roughness-Induced Non-Wetting, Europhys. Lett. 2000, 52, 165.
    [39] Z. Yoshimitsu, A. Nakajima, T. Watanable, K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir 2002, 18, 5818.
    [40] S. M. M. Ramos, E. Charlaix, A. Benyagoub, Contact Angle Hysteresis on Nano-Structured Surfaces, Surface Science 2003, 540, 355.
    [41] F. E. Bartell, B. R. Ray, Wetting Characteristics of Cellulose Derivatives. I. Contact Angles Formed by Water and by Organic Liquids, J. Am. Chem. Soc. 1952, 74, 778.
    [42] N. K. Adam, G. Jessop, CCL.—Angles of Contact and Polarity of Solid Surfaces, J. Chem. Soc., Transactions 1925, 127, 1863.
    [43] J. J. Bikerman, Surface Roughness and Contact Angle, J. Phys. Chem. 1950, 54, 653.
    [44] R. E. Jr. Johnson, R. H. Dettre, Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface, J. Phys. Chem. 1964, 68, 1744.
    [45] R. H. Dettre, R. E. Jr. Johnson, Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces, J. Phys. Chem. 1965, 69, 1507.
    [46] S. Wu, Polymer Interface and Adhesion. Marcel Dekker, Inc, New York and Basel, 1982, 25.
    [47] F. E. Bartell, J. W. Shepard, Surface Roughness as Related to Hysteresis of Contact Angles. I. the System Paraffin-water-air, J. Phys. Chem. 1953, 57, 211.
    [48] R. E. Jr. Johnson, R. H. Dettre, Adv. Chem. Ser. 1963, 43, 112.
    [49] R. H. Dettre, R. E. Jr. Johnson, Adv. Chem. Ser. 1963, 43, 136.
    [50] T. P. Russell, Surface-Responsive Materials, Science 2002, 297, 964.
    [51] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films, J. Am. Chem. Soc. 2004, 126, 62.
    [52] C. L. Feng, Y. J. Zhang, J. Jin, Y. L. Song, L. Y. Xie, G. R. Qu, L. Jiang, D. B. Zhu, Reversible Wettability of Photoresponsive Fluorine-Containing Azobenzene Polymer in Langmuir-Blodgett Films, Langmuir 2001, 17, 4593.
    [53] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshih, T. Watanabe, Light-Induced Amphiphilic Surfaces, Nature 1997, 388, 431.
    [54] K. Ichimura, S.-K. Oh, M. Nakagawa, Light-Driven Motion of Liquids on a Photoresponsive Surface, Science 2000, 288, 1624.
    [55] S. Abbott, J. Ralston, G. Reynolds, R. Hayes, Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces, Langmuir 1999, 15, 8923.
    [56] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey, S. T. Picraux, Lotus Effect Amplifies Light-Induced Contact Angle Switching, J. Phys. Chem. B 2004, 108, 12640.
    [57] X. Wang, S. Zeevi, A. B. Kharitonov, E. Katz, I. Willner, Probing Photoinduced Electron Transfer Reactions by in situ Electrochemical Contact Angle Measurements, Phys. Chem. Chem. Phys. 2003, 5, 4236.
    [58] B. I. Ipe, S. Mahima, K. G. Thomas, Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles: A Potential System for the Controlled Release of Amino Acid Derivatives, J. Am. Chem. Soc. 2003, 125, 7174.
    [59] H. Akiyama, K. Tamada, J. Nagasawa, K. Abe, T. Tamaki, Photoreactivity in Self-Assembled Monolayers Formed from Asymmetric Disulfides Having para-Substituted Azobenzenes, J. Phys. Chem. B 2003, 107, 130.
    [60] J. Isaksson, C. Tengstedt, M. Fahlman, N. Robinson, M. Berggren, A Solid-State Organic Electronic Wettability Switch, Adv. Mater. 2004, 16, 316.
    [61] Y. Liu, L. Mu, B. Liu, S. Zhang, P. Yang, J. Kong, Controlled Protein Assembly on a Switchable Surface, Chem. Commun. 2004, 1194.
    [62] X. Wang, A. B. Kharitonov, E. Katz, I. Willner, Potential-Controlled Molecular Machinery of Bipyridinium Monolayer-Functionalized Surfaces: an Electrochemical and Contact Angle Analysis, Chem. Commun. 2003, 1542.
    [63] J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer, A Reversibly Switching Surface, Science 2003, 299, 371.
    [64] N. L. Abbott, C. B. Gorman, G. M. Whitesides, Active Control of Wetting Using Applied Electrical Potentials and Self-Assembled Monolayers, Langmuir 1995, 11, 16.
    [65] J. A. M. Sondag-Huethorst, L. G. J. Fokkink, Potential-Dependent Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Monolayers on Gold, Langmuir 1994, 10, 4380.
    [66] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible Switching between Superhydrophilicity and Superhydrophobicity, Angew. Chem. Int. Ed. 2004, 43, 357.
    [67] E. Wischerhoff, T. Zacher, A. Laschewsky, E. D. Reka?, Direct Observation of the Lower Critical Solution Temperature of Surface-Attached Thermo-Responsive Hydrogels by Surface Plasmon Resonance, Angew. Chem. Int. Ed. 2000, 39, 4602.
    [68] Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, T. Okano, Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly (N-isopropylacrylamide) Grafted Surfaces, Macromolecules 1994, 27, 6163.
    [69] V. Bulmus, Z. Ding, C. J. Long, P. S. Stayton, A. S. Hoffman, Site-Specific Polymer-Streptavidin Bioconjugate for pH-Controlled Binding and Triggered Release of Biotin, Bioconjugate Chem. 2000, 11, 78.
    [70] D. Crevoisier, P. Fabre, J. Corpart, L. Leibler, Switchable Tackiness and Wettability of a Liquid Crystalline Polymer, Science 1999, 285, 1246.
    [71] S. Minko, M. Müller, M. Motornov, M. Nitschke,K. Grundke, M. Stamm, Two-Level Structured Self-Adaptive Surfaces with Reversibly Tunable Properties, J. Am. Chem. Soc. 2003, 125, 3896.
    [72] B. Zhao, W. J. Brittain, Synthesis, Characterization, and Properties of Tethered Polystyrene-b-polyacrylate Brushes on Flat Silicate Substrates, Macromolecules 2000, 33, 8813.
    [73] S. H. Anastasiadis, H. Retsos, S. Pispas, N. Hadjichristidis, S. Neophytides, Smart Polymer Surfaces, Macromolecules 2003, 36, 1994.
    [74] J. Draper, I. Luzinov, S. Minko, I. Tokarev, M. Stamm, Mixed Polymer Brushes by Sequential Polymer Addition: Anchoring Layer Effect, Langmuir 2004, 20, 4064.
    [75] J. Zhang, X. Lu, W. Huang, Y. Han, Reversible Superhydrophobicity to Superhydrophilicity Transition by Extending and Unloading an Elastic Polyamide Film, Macromol. Rapid Commun. 2005, 26, 477.
    [76] Y. Ito, Y. S. Park, Y. Imanishi, Nanometer-Sized Channel Gating by a Self-Assembled Polypeptide Brush, Langmuir 2000, 16, 5376.
    [77] D. Bai, B. M. Habersberger, G. K. Jennings, pH-Responsive Copolymer Films by Surface-Catalyzed Growth, J. Am. Chem. Soc. 2005, 127, 16486.
    [78] H. Zhang, Y. Ito, pH Control of Transport through a Porous Membrane Self-Assembled with a Poly (acrylic acid) Loop Brush, Langmuir 2001, 17, 8336.
    [79] Y. Liu, M. Zhao, D. E. Bergbreiter, R. M. Crooks, pH-Switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites, J. Am. Chem. Soc. 1997, 119, 8720.
    [80] I. Tokareva, S. Minko, J. H. Fendler, E. Hutter, Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy, J. Am. Chem. Soc. 2004, 126, 15950.
    [81] L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm, I. Luzinov, S. Minko, Inverse and Reversible Switching Gradient Surfaces from Mixed Polyelectrolyte Brushes, Langmuir 2004, 20, 9916.
    [82] Z. Hou, N. L. Abbott, P. Stroeve, Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes, Langmuir 2000, 16, 2401.
    [83] M. D. Wilson, G. M. Whitesides, The Anthranilate Amide of "Polyethylene Carboxylic Acid" Shows an Exceptionally Large Change with pH in Its Wettability by Water, J. Am. Chem. Soc. 1988, 110, 8718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700