用户名: 密码: 验证码:
乳化炸药与有机溶剂混合物热分解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,乳化炸药在生产、运输、储藏、使用和废药销毁过程中先后发生了多起财产损失、人员伤亡的恶性事故,由此人们渐渐认识到乳化炸药也具有相当的危险性,开始重视对其危险性的研究。
     本研究利用改进的铁板测试技术和TG-DSC联用技术研究了乳化炸药基质及乳化炸药基质与石油醚、汽油或柴油混合物的热化学反应动力学,为乳化炸药及其与石油醚、汽油或柴油混合物在焚毁过程中发生爆炸的安全性判断提供理论依据。
     研究表明:
     (1)乳化炸药基质试样的燃烧过程是乳状液结构破坏、油水相分离、水分蒸发和有机物质碳化,然后系统发火,待反应物质消耗殆尽时,系统熄火。其燃烧与环境温度有着密切的关系,当非绝热semenov数处于亚临界和临界值时,爆炸延滞期延长。一旦环境温度超过临界爆炸温度,随环境温度的升高,爆炸延滞期将变短;
     (2)通过铁板实验获得了乳化炸药基质及其与有机溶剂混合物的活化能和相关参数,其中乳化炸药基质的活化能为163.3kJ/mol。通过TG-DSC实验获得了乳化炸药基质及其与有机溶剂混合物的活化能、指前因子和分解反应机理函数,其中乳化炸药基质的活化能为94.42kJ/mol,比铁板实验所得活化能小,这是由两测试系统的不同所造成的;
     (3)乳化炸药基质及其与可有机溶剂混合物的分解反应过程受扩散机理控制;
     (4)乳化炸药与有机油溶剂混合物在受热或遇火焚烧时将比纯乳化炸药更容易发生热分解反应,即其发生爆炸的可能性更大,这在乳化炸药生产、储存、运输,使用和废药销毁过程中应引起足够的重视。
Recent years, several malignant accidents that brought about fearful loss of property and personnel took place successively in the course of producing, transporting, depositing, using and burning down the emulsion explosive, and people slowly have cognizance of emulsion explosive bearing considerable fatalness and begin making a point of researching its fatalness.In this research, thermal chemical reaction kinetics of the mixture of emulsion explosive matrix with petroleum ether, gasoline or diesel oil is testing by improved iron-plate testing technology and TG-DSC coupling technique, in order to research the explosion probability of the mixture of emulsion explosive with combustible oil solvent when it is burning down. The research results indicate:(1)The combustion of emulsion explosive matrix is a course of emulsion being destroyed, oil phase and water phase disjoining, water component vaporizing, organic matter carbonizing, then the system firing till reactant being consuming. The combustion of emulsion explosive matrix is nearly relational with the temperature of the environment, the delayed-action time will extend when the non-adiabatic semenov parameter is around the critical value. Once the temperature of the environment exceeds the critical explosion temperature, the delayed-action time will shorten along with the temperature of the environment ascending;(2) The thermal decomposition reactivity activation energy and correlative parameters of the emulsion explosive matrix and corresponding mixture of emulison explosive with combustible oil solvent were obtained by iron-plate experiment, thereinto, the activation energy of the emulsion explosive matrix is 163.3kJ/mol. The activation energy, pre-exponential factor and decomposition reactivity mechanism function of the emulsion explosive matrix and corresponding mixture of emulison explosive with combustible oil solvent were obtained by TG-DSC experiment, thereinto, the activation energy of the emulsion explosive matrix is 94.42kJ/mol, smaller than which obtained by iron-plate experiment due to the difference of the testing systems.
    (3) The decomposition reactivity course of the emulsion explosive matrix and corresponding mixture of emulison explosive with combustible oil solvent is dominated by the diffuseness mechanism.(4)The mixture of emulsion explosive matrix with combustible oil solvent is easier to decomposes than pure emulsion explosive when being heated or being fired, in other words, its explosion probability is bigger, that should be paid attention in the course of producing, transporting, depositing, using and burning down the emulsion explosive.
引文
[1] 赖应得.含水炸药的应用前景与发展对策.中国煤炭.1999,25(1)
    [2] 张海新,杨福春.国外乳化炸药的发展状况及趋势.爆破器材.1994,23(6)
    [3] 徐国财.对乳化炸药爆轰机理的认识.煤矿安全.2001,(1):28—30
    [4] 宋敬埔,吴红梅.我国乳化炸药的研究近况及发展建议.爆破器材.2003,32(4):5-10
    [5] 李海涛.防自燃自爆乳化炸药与硫化矿石反应机理研究.上海第二医科大学.20000701
    [6] 许志壮,花宝玲.乳化炸药制备安全性的探讨.工程爆破,1998.9,4(3):8-11
    [7] 张其中,李晓飞.瀑破事故分忻与预防对策.冶金安全5矿山火区开采技术考累组大厂科技,19881
    [8] 杨桐,从乳化炸药六起爆炸事故中吸取教训.爆破器材,1995.8,24(4):23-27
    [9] 吴龙祥,裴海兴,李昌满.乳化炸药连续乳化生产工艺安全性浅析.爆破器材.2003,32(2):3-8
    [10] 徐东平,裴海兴,吴龙祥.“6 24”爆炸事故之启示.金属矿山,2003(3):50-51
    [11] 李建军,汪旭光,欧育湘,陈博仁.乳化炸药热分解动力学研究.北京理工大学学报.1996,16(6):636~642
    [12] 周新利,刘祖亮,吕春绪.岩石乳化炸药绝热分解安全性的加速量热法分析.火炸药学报,2003,26(2):62~65
    [13] 陈建平,王瑾等.乳化炸药化学反应动力学参数计算.coal,2000.4,9(4):54~55
    [14] 傅智敏,冯宏图,冯长根,钱新明.用加速量热仪研究乳化炸药的热稳定性.安全与环境学报.2001,1(3):21~25
    [15] 吕震,赵金三.凡口矿使用硝铵炸药的自爆危险性.采矿技术.2002.12,2(4):63~64
    [16] 王国利,李建军,汪旭光,唐勇.采用加速度量热法评价工业炸药热安全性的研究.爆破器材.1997,26(6):1~5
    [17] 王国利,李建军,汪旭光.采用DTA测试及热力学计算评价乳化炸药的安全 性.矿冶.1996,5(4):1~6
    [18] Vyazovkin, S., Wight, C., Int. Reviews in physical Chemistry, 1998, 17(3): 407~433
    [19] 胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,8.
    [20] Flynn, J, H., Thermochim. Acta, 1992, 203(1): 519~526
    [21] Coats, A. W., Redfern, J. P., Analyst, 1693, 88(1052): 906~924
    [22] Tanaka, H., Netsu Sokutei, 1992, 19(1): 32
    [23] Brown, M. E, Brown, R. E., Thermochim. Acta, 2000, 357~358: 133~140
    [24] Vyazovkin, S., Wight, C., Int. Reviews in physical Chemistry, 2000, 19(1): 45~60
    [25] Flynn, J, H., Thermochim. Acta, 1997, 300: 83~92
    [26] Vyazovkin, S., Wight, C., Int. Reviews in physical Chemistry, 1992, 211(1): 181~187
    [27] Sestak, J., Berggern, G., Termochim., Acta, 1997, 3: 1
    [28] 王小红.硝酸铵与乳化炸药典型组分混合物的热分解特性研究:[硕士学位论文].淮南:安徽理工大学,2003.6
    [29] K.K.安德列耶夫著;石秀发译.炸药的热分解.第一版.北京:国防工业出版社,1979:10
    [30] Townsend D I, Tou J C. Thermal hazard valuation by anaccelerating rate calorimeter. Thermochim Acta, 1980, 37: 1~30.
    [31] Rouquerol, J., J. Therm. Acta., 1973, 5: 203
    [32] Rouquerol, J., J. Therm. Acta., 1989, 144(1~2): 209~224
    [33] Reading, M., Trends, Plym. Sci., 1993, 8: 248
    [34] Blain, R. L., Am. Lab., 1998, 30(1): 21
    [35] Blain, R. L., Hahn, B. K,, J. Thermal Anal., 1998, 54: 695
    [36] Paulik, F., Thermal, J., Anal. Chim. Acta, 1973, 67: 437
    [37] 徐国华,袁靖编.常用热分析仪器.上海:上海科学技术出版社,1990,10(1)
    [38] Dolye, C. D., J. Apl. Polymer Sci., 1961, 5(15): 285~292
    [39] Satava, V., Sestak, J., Therm.. Anal., 1975, 8(3): 205~211
    [40] Ozawa T, A new method of analyzing thermogravimatric data[J]. Bull. chem.. Soc. Jpn., 1965, 38(1)1881-1886.
    [41] Starink, M. J., Thermochim. Acta, 1996, 288(1~2): 97~104
    [42] Sestak, J., Melak, J., Solid State Ionics, 1993, 63~63: 245
    [43] Melak, J., Smrcka, V., Thermochim. Acta, 1991, 186(1): 153~169
    [44] Melak, J., Thermochim. Acta. 1992, 200(1): 257~269
    [45] Popescu, C., Thermochim. Acta, 1996, 285(2): 309~323
    [46] Dollimore, D., Tong Ping, Alexander, K. S., lerdkanchanepom, S., Thermochim. Acta, 1996, 282-283(1): 13~27;290(1): 73~83
    [47] 王光龙,许秀成.硝酸铵热稳定性的研究.郑州大学学报(工学版).2003.3,24(1):47~50
    [48] 陈五平主编.无机化工工艺(上册).第三版.北京:化学工业出版社,2002:390
    [49] 化肥工业大全编辑委员会.化肥工业大全[M].北京:化学工业出版社,1988
    [50] 天津化工研究院.无机盐工业手册[M].第二版.北京:化学工业出版社,1994
    [51] 孙占辉,孙金华,陆守香.无机酸对硝酸热稳定性影响的研究.中国安全科学学报.2005.9,15(9):57~62
    [52] 潘云祥,管翔颖,冯增媛.一种确定固相反应机理函数的新方法.无机化学学报.1999(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700