用户名: 密码: 验证码:
水中卤乙酸生成和去除特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国还主要使用氯消毒工艺,氯消毒剂会与饮用水源中的消毒副产物前体物反应,生成氯化消毒副产物,而卤乙酸(HAAs)的浓度是控制消毒副产物的总致癌风险的首要指标参数。因此,针对黄浦江微污染原水,本论文重点进行卤乙酸生成和去除特性的研究。
     本论文以黄浦江微污染水源经常规工艺的各处理单元出水为对象,调查研究黄浦江原水经预氯化和滤后水二次加氯消毒过程中卤乙酸的生成特性及其季节性的变化规律。同时,结合国家863项目的中试工艺流程,试验研究了卤乙酸生成潜能(HAAFP)在O_3/BAC深度处理工艺流程中的去除效果,对比液氯、氯胺、二氧化氯及其组合工艺的消毒效果,研究卤乙酸生成的影响因素,筛选出适合的、安全的消毒剂。并进而对卤乙酸的去除进行了研究,通过小试,分别以活性炭吸附、O_3氧化、H_2O_2氧化、UV氧化及其联合工艺等处理单元考察不同消毒技术对已生成的卤乙酸的控制效果。
     研究结果表明,水厂常规处理工艺的卤乙酸生成量夏季比冬季更大,沉淀水、砂滤水、出厂水中消毒副产物浓度大小顺序基本为沉淀水>出厂水>砂滤水。黄浦江水质测定HAAFP最佳投氯量为13.52mg/L,最大反应时间为6d。O_3/BAC深度处理工艺对HAAFP的去除效果能达到60%左右,较低的臭氧投量(2.0mg/L)就能保证对水中HAAFP有较好的去除效果,并且随着臭氧投加量的增加其去除率不断提高。采用氯胺和二氧化氯作为消毒剂,可以明显降低卤乙酸的生成量。二氧化氯和氯胺联合消毒效果明显优于二者单独使用。
     颗粒活性炭(GAC)对三氯乙酸(TCAA)和二氯乙酸(DCAA)吸附研究表明,在单底质条件下,活性炭对卤乙酸的吸附等温线最符合修正的Freundlich方程,浓度小于200μg/L时,活性炭对卤乙酸基本表现为单层吸附。活性炭投加量为1600mg/L时,GAC对TCAA和DCAA的去除率分别达到98.49%和98.01%。活性炭对TCAA的吸附能力高于DCAA,当平衡浓度为0.3μmol/L时,其对二者的摩尔吸附容量比为1.17:1。酸性条件下有利于活性炭吸附卤乙酸。多底质共存条件下,两种卤乙酸之间存在竞争吸附,与单底质条件下相比,活性炭对TCAA的吸附受影响程度低于DCAA。同时进行了吸附速率比较表明活性炭对DCAA的吸附速率较快。
At present, chlorine was used as the primary disinfectant in our country, and could be reacted with organic matter(NOM) to generate disinfection by-products (DBPs). Haloacetic acids as an indicator of the total carcinogentic risk of disinfection by-products(DBPs).For the micro-contaminated source water of the HuangPu river, the thesis focus on studying characteristics of formation and removal of haloacetic acids(HAAs) in water.In the thesis, aimed at the raw water of the Huangpu river and effluent of different conventional treatment units, and investigated the rule of formation and variation with seasons of HAAs after prechlorination and secondary dosing chlorine into filtered water for disinfection. Simultanous, combine with the treatment process of pilot-scale experiment of the national 863 program, the removal effect of HAAFP by ozonation-biological activated carbon(O_3/BAC) process was investigated. Comparing with the disinfection effects of chlorine,chloramine, chlorine dioxide and their combination processes, the influence factor of HAAs formation was studied in order to select safe and appropriate disinfectant. Furthermore, the removing methods of HAAs were researched through the bench-scale experiments, such as granular activated carbon(GAC) adsorption, UV, O_3, H_2O_2, UV/H_2O_2 and UV/H_2O_2/O_3,etc, to control the HAAs formed in different water treatment units..The results indicated that: the HAAs quantity formed after conventional water treatment processes in summer is larger than in winter. The sequence of HAAs concemtration is that settleing water > finished water > filtered water. When measuring the haloacetic acids formation potential(HAAFP) of Huangpu raw water, the adoptable dosage of chlorine is 13.52mg/L, and the largest react time is 6 days. The removal efficiency of HAAFP by O_3/ BAC advanced treatment process is about 60%. The low dosage of ozone(2.0mg/L) can make sure the removal effect of HAAFP in water, and the removal efficiency will be improved as increasing of the dosage of ozone. Using the chloramine and chlorine dioxide as disinfectant can decrease the formation quantity of HAAs. The disinfect effect of combination technique of chloramine and chlorine
    dioxide is better than using them alone.GAC were adopted to study and contrast the adsorption characteristics of two kinds of HAAs in drinking water. It has to mentioned that the adsoption isotherm of HAAs is best according with the amendatory Freundlich equation under single component system . At the concentration below 200ug/L. When the quantity of GAC is 1600mg/L,the removal efficiency for trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) can arrive at 98.49% and 98.01% respectively. The adsorption capacity for trichloroacetic acid (TCAA) is larger than dichloroacetic acid (DCAA), the mol adsorption capacity for TCAA is 1.17 times as much as for DCAA at the mol equation concentration of 0.3umol/L.It's better for GAC adsorption of HAAs in the acidic condition.Under multicomponent system, there were competition for adsorption between different kinds of HAAs, compared with the case under monocomponent system the influence on adsorption capacity for TCAA is slighter than DCAA, the above results consist with structure character of different organic compounds.At the same time, the adsorption rate were contrasted to show that the adsorption rate for DCAA is rather high.HAAs is difficult to be oxidated after reacting 2 hours, the removal efficiency of HAAs are both blow 15% by using O3 or H2O2 alone, and the removal efficiency of DCAA and TCAA by UV advanced oxidation technique were increased appreciably. The removal efficiency of DCAA and TCAA are preferable by UV/H2O2 or UV/H2O2/O3. Even more, the affect factors of removing DCAA and TCAA were discussed.
引文
[1] 李广贺.水资源利用与保护.北京:中国建筑工业出版社,2002
    [2] 王占生.微污染水源饮用水处理.北京:中国建筑工业出版社,2001
    [3] 王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002
    [4] 邹启光,关小红.二氧化氯取代液氯消毒剂的可行性研究.净水技术,2002,Vol.21(3):13-15
    [5] 王海鸥.氯胺与联合氯胺消毒控制消毒副产物的小试研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2004
    [6] 刘文君,贺北平,曹莉莉等.饮用水中消毒副产物卤乙酸(HAAs)测定方法研究.给水排水,2004,Vol.30(8):38-40
    [7] B.S. Karnik, S.H. Davies, M.J. Baumann & S.J. Masten, The effects of combined ozonation and filtration on disinfection by-product formation. Water Research, 2005, Volume 39(13): 2839~2850
    [8] Eleni Malliarou, Chris Collins& Mark J. Nieuwenhuijsen,Haloacetic acids in drinking water in the United Kingdom.Water Research, 2005, Vol.39(12): 2722~2730
    [9] M. Bekbolet, C.S. Uyguner, H. Selcuk&L. Rizzo, Application of oxidative removal of NOM to drinking water and formation of disinfection by-products.Desalination, 2005, Vol176(1-3): 155~166
    [10] Cynthia Guay, Manuel Rodriguez & Jean Serodes, Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water. Desalination, 2005, Vol176(1-3): 229~240
    [11] 马军.氯化消毒副产物的形成及对饮用水质的影响.中国给水排水,1997,Vol13(1):88-98
    [12] Manuel J. Rodriguez, Jean-B. Serodes &Patrick Levallois,Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system.Water Research, 2004,Vol38(20): 4367~4382
    [13] A. Chin,P.R. Berube,Removal of disinfection by-product precursors with ozone-UV advanced oxidation process. Water Research,2005,Vol39(10): 2136~2144
    [14] Yinan Qi, Chii Shang& Irene M. C. Lo,Formation of haloacetic acids during monochloramination.Water Research,2004,Vol38(9): 2375~2383
    [15] Barry V. Pepich, Mark M. Domino&Teri A. Dattilio,Validating sample preservation techniques and holding times for the approved compliance monitoring methods for haloacetic acids under the US EPA's stage 1 D/DBP rule.Water Research,2004,Vol38(4): 895~902
    [16] Xu Xu, Thomas M. Mariano&Jeffrey D. Laskin, Percutaneous Absorption of Trihalomethanes, Haloacetic Acids, and Haloketones. Toxicology and Applied Pharmacology, 2002, Vol184(1): 19~26
    [17] Yuefeng Xie, Analyzing Haloacetic Acids Using Gas Chromatography/Mass Spectrometry. Water Research, 2001,Vol35(6): 1599~1602
    [18] Chen-Yu Chang, Yung-Hsu Hsieh&I-Chen Shih,The formation and control of disinfection by-products using chlorine dioxide.Chemosphere, 2000,Vol41 (8): 1181~1186
    [19] 杨进,周世伟.饮用水中卤代乙酸分析方法研究.中国卫生检验杂志,2001,Vol11(3):270-272
    [20] Taha F. Marhaba &Doanh Van,The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant.Journal of Hazardous Materials, 2000,Vol74(3): 133~147
    [21] 金维荣.饮用水加氯消毒副产物(三卤甲烷和卤乙酸)研究.净水技术,1997,Vol60(2):9-13
    [22] 陆在宏,康兰英.应用反渗透法-RO组合净化器深度处理自来水有害物质效果研究.给水排水,1995,Vol21(3):37-39
    [23] 李建渠,李灵芝.饮用水中卤代消毒副产物的产生和影响因素的研究.重庆环境科学,1998,Vol.20(3):45-50
    [24] 罗晓鸿,王占生,张锡辉.饮用水消毒剂的比较与评价.给水排水,1994,Vol.10(8):43-45
    [25] Bethany M. McRae, Timothy M. LaPara &Raymond M. Hozalski,Biodegradation of haloacetic acids by bacterial enrichment cultures.Chemosphere,2004,Vol55(6): 915~925
    [26] 黄晓东,王占生.氯化反应条件对三氯甲烷生成量的影响.中国给水排水,2002,Vol.18(6):14-17
    [27] Frederick W Pontinus. D-DBP Rule to Set Tight Standards. J AWWA, 1993, 85(11): 22~30
    [28] 李建渠,李灵芝,张淑琪.饮用水卤代消毒副产物的去除途径探讨.环境与开发,1998,Vol13(2):33-35
    [29] 尤作亮,张金松,惠如冰.二氧化氯净化副产物的控制与去除技术.给水排水,2003,Vol29(3):17-21
    [30] King W.D.,Marrett. L.D.Case—control study of bladder cancer and chlorination by—products in treated water(Ontario, Canada). Cancer Causes Control, 1996, 7: 596-604
    [31] Daniel Phillippe A, Meyerhofer Paul F.A Risk Assessment Approach to Selecting a Disinfection By-product Control Strategy. In: Vancouver B C ed. AWWA 1992 Annual Conference Proceeding June18-22, 1992:281~301
    [32] R.J.Bull, F.C.Kopfler. Health Effects of Disinfectants and Disinfection By—Products. AWWARF, Denver, 1991
    [33] 张晓健,李爽.消毒副产物总致癌风险的首要指标参数——卤乙酸.给水排水,2000,Vol.26(8):1-6
    [34] 吴国权,钱庆玲.氯化消毒产物及去除途径探讨.净水技术,1996,Vol56(2):29-33
    [35] 王永仪.二氧化氯消毒时三氯甲烷形成量的研究.环境科学,1995,Vol16(4):32-34
    [36] 马峥,张振良,于惠芳.活性炭对水中有机物去除的研究.环境保护,1999,Vol36(5):41-44
    [37] 孙治荣,王宝贞.饮用水处理中的几种消毒剂.环境保护科学,1999,Vol25(1):10-12
    [38] 刘文君.饮用水中消毒副产物卤乙酸(HAAs)测定方法研究,给水排水,2004,Vol30(8):38-40
    [39] 张晓健.安全氯化消毒工艺的消毒副产物控制.中国给水排水,2004,Vol20(9):9-16
    [40] 董青,陈济民.二氧化氯用于饮用水消毒控制指标及测定方法,净水技术特刊,2002:24-25
    [41] 张金松,董文艺.臭氧化——生物活性炭深度处理工艺安全性研究,给水排水,2003,Vol29(9):1-4
    [42] 郝建英.氯消毒的副产物及可替代剂.科学情报开发与经济,2003,Vol13(5):94-95
    [43] 汪昆平,齐嵘,张昱等.5种颗粒活性炭对水中卤乙酸的等温吸附试验,环境科学,2005,Vol26(3):96-99
    [44] 曹莉莉,张晓健,王占生等.饮用水处理中活性炭吸附卤乙酸的特性.环境科学,1999,Vol20(5):72-75
    [45] 李来胜,祝万鹏,李中和.催化臭氧化去除水中卤乙酸的研究.上海环境科学,2002,Vol21(5):282-284
    [46] 沈忠,王果庭.胶体与表面化学.北京:化学工业出版社,1997
    [47] 孙治荣,秦媛,张素霞等.微污染水源水中消毒副产物前体物的去除.环境污染与防 治,2004,Vol26(5):321-325
    [48] 陈萍萍,张建英,金坚袁.饮用水中卤乙酸和三卤甲烷的形成及影响因素研究.环境化学,2005,Vol24(4):434-437
    [49] 王占生,刘文君,微污染水源饮用水处理.北京:中国建筑工业出版社,1999
    [50] Nikolaou A D,Golfinopoulos S K,Kostopoulou M N, Determination of haloacetic acids in water by acidic methanol esterification-GC-ECD method. Water Research. 2002, Vol36(8): 1089~1094
    [51] 唐非,谷康定,丁建东等.二氧化氯与氯联合消毒减少消毒副产物.中国给水排水,2003,Vol19(11):55-58
    [52] 赵振业,黄君礼,邓丽.二氧化氯在饮用水消毒中的无机副产物.哈尔滨建筑大学学报,1999,Vol32(6):45-47
    [53] 王家玲.环境微生物学实验.北京:中国环境科学出版社,1998
    [54] 张金松,张红亮,董文艺等.O_3/BAC对氯化消毒副产物的控制作用.中国给水排水,2004,Vol20(2):16-20
    [55] 岳禹琳.上海市自来水中氯化消毒副产物研究.中国给水排水,1992,Vol8(5):8-10
    [56] 王琳,王宝贞.优质饮用水净化技术.北京:科学出版社,2000
    [57] 王晓昌.臭氧用于给水处理的几个理论和应用问题.西安建筑科技大学学报,1998,Vol30(4):307-309
    [58] 林细萍,卢益新,张德明等.THMFP及HAAFP的测定方法.中国给水排水,2003,Vol19(10):98-100
    [59] 张晓健,陈超,何文杰等.安全氯化消毒工艺的消毒副产物控制.中国给水排水,2004,Vol20(9):13-16
    [60] 许葆玖.给水处理理论.北京:中国建筑工业出版社,2000
    [61] 童俊,蒋增辉.氯胺消毒对管网水质的影响.城市公用事业.2000,Vol14(4):16-19
    [62] 李伟光,安东,崔福义等.生物降解与吸附作用协同去除卤乙酸生成势.中国环境科学,2005,Vol25(1):61-64
    [63] Villanueva C M, Kogevinas M, Grimait J O. Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 2003, Vol37(4): 953~958
    [64] 任月明,赵洪宾,张德明等.饮用水中5种卤乙酸的检测方法研究.哈尔滨工业大学学报,2003,Vol35(12):1510-1513
    [65] Brophy K S, Weinberg H S&Singer P C. Quantification of nine HAAs using gas chromatography with electron capture detection. American Chemical Society, 2000: 343-355
    [66] 徐丽,于晓英.二氧化氯消毒剂性能及其消毒副产物的毒性.辽宁化工,2003,Vol32(9):386-388
    [67] 宋鸿,奚旦立.二氧化氯技术在水处理中的应用.污染防治技术,1998,Vol11(3):147-150
    [68] 王宝贞,王欣泽,李冰等.优质饮用水的消毒方法.哈尔滨工业大学学报,2002,Vol34(4):478-482
    [69] 王宝贞.水污染控制工程.北京:高等教育出版社,1990
    [70] 魏建荣,王振刚,郭新彪等.生活饮用水中消毒副产物的分布水平.环境与健康杂志,2004,Vol21(1):33-37
    [71] Korshin G, Li C-W, Benjamin M. The decrease of UV absorbance as an indicator of TOX formation. Water Research, 1997, Vol31(4):946~949
    [72] 许浩,梁卫玖,顾帆等.五步碘量法测定二氧化氯的探讨.上海预防医学杂志,2004,Vol16(8):367-368
    [73] 韩艳淑,陈素良,甄素娟等.二氧化氯发生器对饮用水消毒效果观察.中国消毒学杂志,2005,Vol22(1):43-45
    [74] 卫生部卫生法制与监督司.消毒技术规范.北京:中华人民共和国卫生部,2002:56-61
    [75] 曲丽萍.二氧化氯取代氯饮水消毒剂的发展趋势.中国供水卫生,1999,Vol7(1):22
    [76] 战威,梁增辉,李君文.氯胺和二氧化氯对大肠杆菌联合消毒作用的研究.疾病控制杂志,1999,Vol3(3):159-162
    [77] 陈忠林,范洁,杨荣华等.饮用水加氯消毒副产物及其控制技术的发展.哈尔滨建筑大学学报,2000,Vol33(6):35-39
    [78] 安丽.活性炭纤维(ACF)对水中卤代烃吸附作用和机理的研究:[博士学位论文].上海:同济大学环境工程学院,1994
    [79] 黄君礼.新型水处理剂——二氧化氯技术及其应用.北京:化学工业出版社,2002
    [80] 鲁秀国,刘汉东.TiO2光催化法去除饮用水中的有机卤代物.吉首大学学报,2001,Vol22(2):54-57
    [81] 高乃云,李富生.浅议上海饮用水水源及处理后水质.给水排水,2002,Vol28(3):9-11
    [82] 刘文君.饮用水中可生物降解有机物与消毒副产物特性研究.[博士学位论文],北京:清华大学环境工程学院,1999
    [83] 许葆玖,安鼎年.给水处理理论与设计.北京:中国建筑出版社,1992
    [84] 陈卓,杨呈勇.富里酸氯化消毒副产物生成的影响因子.南京大学学报,2000,Vol24(2):11-15
    [85] 曹莉莉.饮用水处理中消毒副产物的控制特性研究.[硕士学位论文],北京:清华大学环境工程学院,1999
    [86] 雷乐成.水处理高级氧化技术.北京:化学工业出版社,2001
    [87] 王晓昌.臭氧用于给水处理的几个理论和应用问题.西安建筑科技大学学报,1998,Vol30(4):307
    [88] 田颖,王晶日,黄丽萍.饮水消毒的变革——新型消毒剂二氧化氯取代液氯的前景.环境保护科学,2000,Vol26(8):14-16
    [89] R.E.Rathbun. Effect of Reaction Time On The Formation Of Disinfection Byproducts, Chemosphere, 1997, Vol34(12): 2699~2713
    [90] Joanne Sketchell, Hans G. Peterson. Disinfection By-Product Formation After Biologically Assisted GAC Treatment of Water Supplies With Different Bromide and DOC Content. Water Research, 1995, Vol29(12): 2635~2642
    [91] U.Raczyk-Stanisruleiak,J.Swietlik.Biodegradability of Organic by-Products After Natural Organic Matter Oxidation with ClO_2—Case Study. Water Research, 2004, Vol38: 1044~1054
    [92] Bethany M. Mcrae, Timothy M. Lapara. Biodegradation of Haloacetic Acids by Bacterial Enrichment Cultures. CHEMOSPHERE, 2004,Vol55: 915~925
    [93] 高乃云,严敏,乐林生.饮用水强化处理技术,北京:化学工业出版社,2005
    [94] 吴一蘩,高乃云,乐林生.饮用水消毒技术,北京:化学工业出版社,2005
    [95] 黄君礼.二氧化氯分析技术.北京:中国环境科学出版社,2000
    [96] 焦中志,陈忠林,刘丽君等.氯胺消毒对卤乙酸类消毒副产物的控制研究.给水排水,2005,Vol.31(6):35-37
    [97] A. Nikolaou, S. Golfinopoulos, L. Rizzo, G. Lofrano&T. Lekkas, Optimization of analytical methods for the determination of DBPs: Application to drinking waters from Greece and Italy. Desalination, 2005,Vol176(1-3): 25~36
    [98] 李晓东,蔡国庆,马军.水中有机成分及其对饮用水水质的影响.中国给水排水,1999,Vol25(5):12-14
    [99] 潘海洋,付家谟.微污染源水的处理组合工艺对水致突变性的影响.中国给水排水, 1999,Vol.15(2):10-13
    [100] 王丽花,周鸿,王占生等.常规工艺对消毒副产物及前体物的去除.给水排水,2001,Vol27(4):35-37
    [101] 黄君礼.二氧化氯分析技术.北京:中国环境科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700