用户名: 密码: 验证码:
IGS精密星历的误差研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS观测技术近十年来迅速发展,在基础测绘、卫星导航、地球自转、地壳形变监测等多方面已被广泛应用,尤其在大陆构造变形与地球动力学研究方面更是发挥着独特作用。在GPS用于精密大地测量中,精密星历对于GPS数据的后处理是不可或缺的。IGS精密星历自1994年开始发布以来在国际上一直被广泛应用,但其精度究竟如何?其标称精度是否符合实际精度?IGS精密星历是否存在系统偏差?如果有的话来源是什么?不同时期其随机误差是多少?IGS精密星历是否还可以改进?如果是的话如何改进?厘清这些问题对于GPS技术在地球自转、板块运动、大陆构造变形、地震监测等方面的高精度应用有着十分重要的意义,是当前亟待解决的课题。
     为回答上述问题,论文采用目前最高精度的ITRF2000全球参考框架、最新的地球物理模型和误差改正模型、统一的卫星轨道参量和地球自转模型、统一的数据处理策略,重新处理了IGS全球跟踪站数据以求解1994至2004年的GPS卫星轨道,以期通过轨道比较来评估IGS精密星历的精度。
     重解得到的GPS卫星轨道与IGS精密轨道之间存在着系统偏差和随机误差。为了分离系统偏差和随机误差,以便更好地分析系统偏差的来源和随机误差的大小,我们对每一天的两种轨道求解一组相似变换的七参数(3个平移参数、3个旋转参数、1个尺度参数),检验后认为七参数转换基本可以消除两种轨道之间的系统偏差。通过分析七参数的时间序列来研究IGS精密轨道的系统偏差及其来源,通过比较IGS精密轨道和消除了系统偏差的重解轨道的结果,从而研究IGS精密轨道的随机误差。
     论文得到了以下认识和结论:
     1.ITRF序列参考框架之间存在着系统偏差,利用IERS公布的转换参数将ITRF2000下的坐标和速度转换到ITRF其他序列下可以消除IERS认知的不同序列间的系统偏差,但实际上不能完全表征ITRF序列间的差异,其残存的系统差仍非常明显。
     2.IGS精密星历的标称精度和实际精度存在着差异,特别是早期结果。
     3.IGS精密星历在不同时期存在不同的系统偏差,这主要由其在不同时期采用的不同ITRF序列参考框架之间的差异引起。对IGS精密轨道和重新解求的精密轨道每天求解的七参数进行研究,结果表明IGS精密星历的系统偏差与所采用的参考框架密
In the last decade GPS technology has gained rapid development, and has been widely applied to many fields such as surveying and mapping, navigation, earth rotation determination, and crustal deformation monitoring. It has played a unique role in the research of continental tectonic deformation and geodynamics in particular. Applying GPS in the precise geodetic surveying, the precise ephemeris is indispensable in post-processing of GPS data. The IGS precise orbits have been widely used in the world ever since the beginning of their broadcast in 1994. However, what is their accuracy? Is their formal accuracy representative of the real accuracy? Are there systematic biases with them? If so, what are the origins? Is it possible to improve their accuracy? If so, how? It is vitally important and urgently needed to answer these questions in order to improve the accuracy of GPS technique for the applications in, for example, earth rotation determination, research on tectonic plate motion, tectonic deformation of continents, and earthquake monitoring.In order to answer the above questions, this work reprocesses GPS data from the IGS global tracking network to obtain precise GPS orbits from 1994 to 2004. Uniform data processing strategy is adopted, consistent orbital and Earth rotation parameters are prescribed, the most recent geophysical models and appropriate error correction models are used, and the ITRF2000 station positions and velocities of the IGS sites are used to define the reference frame. We expect to evaluate the accuracy of IGS orbits through comparison between the ICS and our reprocessed orbits.Systematic biases and random errors exist in the IGS precise orbits and the reprocessed orbits. In order to differentiate the systematic biases and the random errors for better analysis of their origins and magnitudes, I estimate transformation seven parameters (3 for translation, 3 for rotation, and 1 for scale) between the two sets of orbits. The result verifies that the seven-parameter-transformation can eliminate much of the systematic biases between the two orbits. Then I research the
    systematic biases and their origins through analyzing the time series of the transformation parameters, and investigate the random errors through comparing the IGS precise orbits with the reprocessed orbits from which the systematic biases have been eliminated.The findings and conclusions of this thesis are as follows:1. The systematic biases exist in different ITRF reference frames, whose differences cannot be solely removed by applying the transformation relationships between the reference frames published by IERS. The remaining systematic biases are still significant.2. Significant differences are found between the IGS claimed and actual orbital accuracies, especially for the orbits of the early years.3. The systematic biases of the IGS orbits vary with time resulted mainly from adopting different ITRF reference frames over the years. Analysis of the seven transformation parameters between the IGS precise orbits and the reprocessed orbits shows that the systematic biases of the IGS orbits are closely related to the ITRF reference frames adopted. Especially, the differences between the origin, orientations, and velocity fields of the ITRF92 and ITRF93 reference frames and other ITRF reference frames after ITRF94 have been reflected in the systematic biases of the orbits. To be specific:? The influence of the mass center definition: The origin of a reference frame is defined as the mass center of the earth, which, for the ITRF92 and ITRF93 reference frames, is obtained from the analysis result of SLR, derived by the Space Research Center of the University of Texas. On the other hand, origins of the ITRF sequences after 1TRF94 are obtained from a weighted average of SLR and other geodesic results. The obvious change of the trends of the translation parameters w and \) around 1996.5 reflects the systematic bias caused by this change of definition of the earth origin.? The influence of the model constraints on the ITRF reference frames: The maintenance of the ITRF reference frames relics heavily on the knowledge of the reference stations' motion. The orientations of the ITRF92 and ITRF93
    reference frames are constrained using station velocities predicted by the NUVEL1A plate motion model. The difference between this plate motion model and reality has an impact on the definition of the earth origin, which is evident as demonstrated in the approximately linear trend of the translation parameters &x and ar from 1994.0 to 1996.5? The influence of the orientation constraints on the ITRF reference frames : The significant jumps of the rotation parameters Qxand Qyin 1995, 1996, and 1997 take place at the moments of transition between the ITRF reference frames, which reflect the change of orientation parameters of the ITRF reference frames. The orientation parameters of ITRF93 differ from the parameters of other ITRF reference frames by 1.5-2.0 mas. Accordingly, Q, and Qy obtained for the time span of ITRF93 differ significantly from those of other time periods.4. GPS data analysis by CMONOC reveals that since 2001 a scale factor change has emerged, ranging from ~1 x 10"9 in 2001 to ~3 x 10"9 in 2004. This observation agrees with the observations of GPS community abroad (e.g. Dong Danan, personal communication). However, this change is not reflected in the comparison between the seven transformation parameters, suggesting that the effect must commonly exist in both orbits and therefore will not show up in the calculation of the transformation parameters between the orbits.5. Relative to the reprocessed orbits, the random errors of the IGS precise orbits diminish along with time: they are about 15-20 cm in 1994, reduced to 6-8 cm in 1998, and are less than 5 cm after 1998.6. The accuracy of the IGS precise ephemeris is improving steadily, which benefits mainly from the following aspects: ? The accuracy of the ITRF reference frames adopted in IGS precise ephemeris keeps improving. ? In the last decade, the GPS satellite condition, positioning technique, and receiver technology have gained significant progress, and the accuracy of the GPS observation lias been improved gradually. (3)The geophysical models and data error models adopted in data processing have also been improved. The coordinates o\' the tracking stations have
    been refined .The logs of the tracking stations and device updating records have become more and more complete. The data processing methods have been optimized and converged. (4) The number of IGS tracking stations has increased and the distribution of these stations become more and more uniform, so that the influence of random errors of the tracking stations and accidental gross errors of individual stations is minimized.To study crust deformation using early-year GPS observations with its network covering a large area, it is possible to reduce the effect of inaccurate orbits by using relaxed IGS precise orbits to obtain loosely constrained solutions and convert that to the 1TRF global reference frame by performing seven parameter transformations. However, the influence of systematic biases in the IGS precise orbits on the position results can not be eliminated by such transformations, because the differences between the ITRF reference frames are not totally systematic, thus their influence on the positioning results can not be systematic as well.Reprocessing the GPS satellite orbits and improving the accuracy of the orbits of the early 1990s will be helpful in improving the baseline-mode positioning results. For the high-accuracy GPS applications, such as the earth rotation determination, tectonic plate motion, and earthquake deformation monitoring which usually require long time span of observational data, the need for reprocessed GPS orbits is more urgent. In this regard, the systematically reprocessed orbits for the last decade presented in this thesis have made an important contribution to this aspect.
引文
[1] 周忠漠,易杰军.周琪.GPS卫星测量原理与应用.北京:测绘出版社,1992.
    [2] 方秀花,尹志忠.张文静 美国GPS发展新动向.国际太空,2002,10,28-31.
    [3] Kouba, et al. IGS Workshop Proceedings: 1993 IGS Analysis Center Workshop 12-14 October 1993, Geodetic Survey Division, Natural Resources Canada, Ottawa, CanadaJ. 1993.
    [4] IGS Central Bureau. 2001 IGS Annual Report. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA. 2002.
    [5] IGS Central Bureau. 1999 IGS Annual Report. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA. 2000.
    [6] IGS Central Bureau. 1995 IGS Annual Report. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA. 1996.
    [7] King R W, Bock Y. Documentation for the GAMIT GPS analysis software version 10.03. Massachusetts Institute of Technology, Cambridge, 2002.
    [8] Herring T A. GLOBK: Global Kalman filter VLBI and GPS analysis program version 4.10. Massachusetts Institute of Technology, Cambridge, 2000.
    [9] Jan Kouba. A Guide to Using International GPS Service(IGS) Products, 2003.
    [10] 叶叔华,黄诚主编.天文地球动力学.山东:山东科学技术出版社,2000,278-282
    [11] 赖锡安,黄立人,徐菊生等.中国大陆现今地壳运动.地震出版社,2004.98-111.
    [12] 王敏,张祖胜等.2000国家GPS大地控制网的数据处理和精度评估.地球物理学报,2005.4.
    [13] Wang Qi, Zhang Peizhen, Freymueller J T, et al. Present day crustal deformation in China constrained by Global Positioning System(GPS) measurements[J]. Science, 2001, 294: 574-577.
    [14] 王琪.张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场.地学前缘,2002,9(2):415-429.
    [15] Shen, Z. K, Zhao, C. K, Yin, A., et al. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J. Geophys. Res., 2000, 105: 5721-5734.
    [16] Shen, Zheng-Kang, M. Wang, Y. Li, et al. Crustal deformation associated with the AItyn Tagn fault system, western China from GPS. J. Geophys. Res.. 2001, Vol. 106, No. 12, P30607-3062.
    [17] 沈正康.王敏.甘卫军等.中国大陆现今构造应变率场及其动力学成因研究.地学前缘.2003,1.
    [18] 甘卫军.沈正康,张培震等.青藏高原地壳水平差异运动的GPS观测研究.大地测量和地球动力学.2004,1.
    [19] 马宗晋,张培震,任金卫等.从GPS水平矢量场对中国及全球地壳运动的新认识.地球科学进展.2003.
    [20] 马宗晋.陈鑫连.叶叔华等.中国大陆区现今地壳运动的GPS研究.科学通报,2001,46(13):1118-1120.
    [21] 牛之俊.马宗晋,陈鑫连等.中国地壳运动观测网络.地壳形变与地震,2002,22(3):88-93.
    [22] 王敏.沈正康,牛之俊等.现今中国大陆地壳运动与活动块体模型.中国科学.D辑.2003.33(增刊).
    [23] 张培震.王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块.地学前缘.2002.9(2):430-44
    [24] Dong D, P. Fang, Y. Book, et al. Anatomy of apparent variations from GPS derived site position time series, J. Geophys. Res, 2002. 107(B4): ETG(9): 1-16.
    [25] Mader G. L. GPS antenna calibration at the National Geodetic Survey. GPS Solutions. 1999, Vol.3, No. 1, P50-58.
    [26] Yuki Hatanaka, Masanori Sawada, Akiko Horita et al. Calibration of antenna-radome and monument-multipath effect of GEONET-Part 1: Measurement of phase characteristics, Earth Planets Space. 2001. 53, P13-21.
    [27] Yuki Hatanaka, Masanori Sawada, Akiko Horita et al. Calibration of antenna-radome and monument-muhipath effect of GEONET-Part 2: Evaluation of the phase map by GEONET data, Earth Planets Space, 2001. 53, P23-30.
    [28] Schmid, R., G Mader, T. Herring, From relation to absolute antenna phase center corrections. http://www.igsws2OO4.unibe.ch/Abstracts/Antenna_Effects.pdf
    [29] 沈正康.关于地震预报研究发展战略的思考.国际地震动态,2005,5.
    [30] 沈正康,万永革,甘卫军.华北地区700年来地壳应力场演化与地震的关系研究.中国地震,2004.3.
    [31] 黄立人.地壳运动的参考框架.大地测量与地球动力学,2002,22(3):102-108.
    [32] 朱文耀,张强.中国地球自转和地壳运动监测的研究工作.天文学进展,2000,18(1):10-17.
    [33] 唐颖哲.杨元喜,宋小勇.2000国家GPS大地控制网数据处理方法与结果.大地测量与地球动力学.2003,23(3):77-82.
    [34] 游新兆,王琪,赖锡安等.中国大陆现今地壳运动的GPS测量.见:现代地壳运动的空间测量技术与数据处理方法.上海:上海科学技术出版社,2002,46-53.
    [35] 白鹤峰,任萱,郗晓宁.近地轨道卫星星座设计时的轨道模型.国防科技大学学报.1999.Vol.21.No.1.
    [36] 张鹏.GPS实时精密星历确定.全球定位系统,2001,4,9-15.
    [37] 李济生.人造卫星精密轨道确定.北京:解放军出版社.1995.
    [38] 王小亚,朱文耀,符养等.GPS监测的中国及其周边现时地壳形变.地球物理学报.2002.45(2):198-209.
    [39] 符养,朱文耀,王小亚等.利用中国地壳运动观测网络研究中国大陆相对于ITRF97板块模型形变.地球物理学报.2002,45(3):330-337.
    [40] 顾国华,孙汉荣.长距离GPS基线及卫星定轨计算精度.地壳形变与地震,1997.17(2):13-19
    [41] 黄立人,地壳运动的参考框架.大地测量与地球动力学,2002,22(3):102-108.
    [42] 李延兴,胡新康,赵承坤.GPS监测网数据处理方案研究.测绘学报.1999,28(1):62-66.
    [43] 刘金南,许才军,宋成骅等.精密全球卫星定位系统多期复测研究青藏高原现今地壳运动与应变.科学通报,2000,24(45):2658-2663.
    [44] IGS Central Bureau. International GPS Service (IGS) Strategic 2002-2007 Plan. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA, 2001.
    [45] D. Dong, T. Yunck, M. Heflin. Origin of the International Terrestrial Reference Frame. Journal of Geophysical Research, Vol.108, No.B4, doi: 10.1029/2002JB002035, 2003.
    [46] Kouba, J. Sub-daily Earth Rotation Parameters and the International GPS Service Orbit/Clock Solution Products. Studia Geophysics et Geodetics 46, 2002, P9-25.
    [47] Ferland, R. ITRF Coordinator Report, 1999 IGS Annual Report, IGS Central Bureau, JetPropulsion Laboratory. Pasadena, CA,2000, ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/1999_IGS_AnnRep.pdf.
    [48] Ferland, R. ITRF Coordinator Report, 2000 IGS Annual Report, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, CA. 2001.P24-28,ftp://igscb.jpl.nasa.gov/igscblresource/pubs/2000_an_rpt.pdf.
    [49] Ferland, R., Z. Altamimi, C. Bruynx, et al. Regional Network Densifications, Proceedings of IGS Network, Data and Analysis Center Workshop 2002, held in Ottawa, Canada, April 8-11.
    [50] Geoffrey Blewitt. David Lavallee, Peter Clarke. A New Global Mode of Earth Deformation: Seasonal Cycle Detected, Science, 2001, 294, 2342-2345.
    [51] Dong, D., T. A. Herring, and R. W. King, Estimating Regional Deformation From a Combination of Space and Terrestrial Geodetic data, J. Geod., 1998, 72: 200-214.
    [52] Dong, D., Fang, P., Bock, Y., et al. Anatomy of Apparent Seasonal Variations form GPS-derived Site Position Time series, Journal of Geophysical Research, 2002, 107(B4).
    [53] Markku Poutanen, Hannu Koivula, Matti Ollikainen. IAG 2001 Scientific Assembly, Budapest, Hungary.
    [54] Smith, D., D. Wilton, J. Williams, Compensating GPS time delay due to phase center variations, http://www2.eqr.uh.edu/~dtsmith/Welcome.html.
    [55] Stolk, K., A. Brown, Phase center calibration and multipath test results of a digital beam-streered antenna array,http://www.navsvs.com/Papers.0309OO2.pdf.
    [56] Schmid, R., G. Mader, T. Herring, From Relation to Absolute Antenna Phase Center Corrections. http://www.iqsws2004.unibe.ch/Abstracts/Antenna Effects.pdf.
    [57] 王静瑶,吴云.现代地壳运动与地震监测预报研究的现状和发展趋势.地球科学进展,2000,15(1):84-89.
    [58] 张鹏.GPS实时精密星历确定.全球定位系统.2001,4,9-15.
    [59] 朱义耀,张强.中国地球白转和地壳运动监测的研究工作.天文学进展,2000,18(1):10-17.
    [60] 郭际明.GPS与GLONASS最新发展.测绘信息与工程.2002,27(2):28-30.
    [61] 顾国华,孙汉荣.长距离GPS基线及卫星定轨计算精度.地壳形变与地震,1997,17(2):13-19.
    [62] 陆彩萍,王解先.GPS监测地壳运动数据处理.大地测量与地球动力学,2002,22(4):56-60.
    [63] 马宗晋,陈鑫连,叶叔华等.中国大陆区现今地壳运动的GPS研究.科学通报,2001,46(13):1118-1120
    [64] Elmar Brockmann. Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System, Switzerland, 211 Seiten, 1997.
    [65] Geoffrey Blewitt, David Lavallee, Peter Clarke. A New Global Mode of Earth Deformation: Seasonal Cycle Detected, Science, 2001,294, 2342-2345.
    [66] 王侠,于相慧,赵明晶等.人造卫星轨道要素的计算.吉林地质,1999,18(2):66-72.
    [67] 吴云,申重阳,乔学军.现今地壳运动与地震前兆研究.大地测量与地球动力学,2002,22(1):22-28.
    [68] 丁国瑜,卢演俦.板内块体的现代运动.见:马杏垣主编,中国岩石圈动力学地图集.北京:中国地图出版社,1989.
    [69] 马杏垣,中国岩石圈动力学纲要,地质出版社,1987.
    [70] 顾国华,孙汉荣.长距离GPS基线及卫星定轨计算精度.地壳形变与地震,1997,17(2):13-19
    [71] 朱文耀,程宗颐.姜国俊.利用GPS技术监测中国大陆地壳运动的初步结果.天文学进展,1997,15(4):373-376
    [72] Markku Poutanen. Hannu Koivula. Matti Ollikainen. IAG 2001 Scientific Assembly. Budapest, Hungary. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700