用户名: 密码: 验证码:
中性木聚糖酶在食品中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物技术的发展,木聚糖酶的应用领域正在逐渐扩大。目前,木聚糖酶己成功应用于制浆造纸、食品、医药等工业中。在食品工业中,虽然木聚糖酶有着广阔的应用前景,但是目前应用性研究还不够深入,范围也不够大,有待于进一步研究。本文在研究中性木聚糖酶酶学性质的基础上,研究了中性木聚糖酶在面包制作中的应用和在速溶焦大麦饮料生产中的应用。
    本文首先测定了中性木聚糖酶制剂中中性木聚糖酶的活力和其他可能存在的一些酶的活力,结果表明:以桦木木聚糖为底物,pH6.4、温度50℃条件下采用DNS法测定液态中性木聚糖酶制剂中木聚糖酶活力,其活力为4460±65 U/g;液态中性木聚糖酶制剂中,果胶酶和纤维素酶活力极低,可以忽略不计。在此基础上,研究了中性木聚糖酶的部分酶学性质,结果表明:中性木聚糖酶的最适温度为55℃、最适pH为pH6.4;温度为25℃时,中性木聚糖酶在pH3.2~6.4范围内稳定(10hr),pH7.2~10.4范围内,中性木聚糖酶失活速率常数k随着pH的上升增加,但是失活速率均不大;中性木聚糖酶在30~50℃稳定,温度在50℃以上,随着温度的上升失活速率显著加快,70℃时在5min内几乎完全失活。
    根据中性木聚糖酶的一些基本性质,探讨了中性木聚糖酶作为面包焙烤添加剂的可行性。根据粉质曲线,在中性木聚糖酶合适的添加范围内,可以明显改善面团的揉制,缩短揉制时间,当酶的添加量为30ml/100kg面粉时,面团的形成时间降低50%左右,从而加快揉面的速率,提高生产效率。在适当的添加范围内(5~42ml/100kg面粉)中性木聚糖酶可以明显地增加面包的体积和比容,减小面包皮的硬度,同时改善面包心的弹性、硬度以及柔软性。中性木聚糖酶具有明显的抗老化作用,添加范围为5~42ml/100kg面粉能明显改善面包在贮存过程中的品质,贮藏7天后,面包的硬度和弹性没有明显变化,因而大大延长了货架寿命。这些结果表明,中性木聚糖酶作为焙烤添加剂是可行的,添加范围可以在5~42ml/100kg面粉,其中30ml/100kg面粉的添加量最佳。
    将中性木聚糖酶与淀粉酶和蛋白酶复合用于生产速溶焦大麦饮料。首先,采用大麦焙炒设备焙炒含水量为10±0.20%的大麦,大麦最佳焙炒温度和时间分别为178℃、24min。然后,将中性木聚糖酶与淀粉酶、蛋白酶复合,同时添加以液化焦大麦粉生产焦大麦饮料。通过单因素实验确定焦大麦的最佳酶解工艺为料水比1:9,酶解pH6.5,酶解温度60℃,酶解时间60min,而中性木聚糖酶、蛋白酶和淀粉酶三种酶最适添加量(E/S)分别为1.0%、1.0%和1.5%,在最佳工艺条件下可使焦大麦总固形物提取率达64~66%。接着,焦大麦酶解提取液经浓缩后按雾化器转盘空气压力0.25Mpa、进风温度180℃、出风温度80℃的条件进行离心喷雾干燥,喷雾干燥后的样品速溶性较好,润湿性、分散性和溶解性分别为53.50±2.17S、12.33±0.58S和93.66±0.03%,堆积密度为0.4279±0.0034g/ml。当焦大麦被复合酶液化时,体系黏度在前10min快速下降,平均粒径前30min减小比后30min明显。酶解过程中体系中可溶性组分的相对分子质量逐渐减小,酶解及灭酶后体系中短肽的重均相对分子质量大部分小于1,500Da,而可溶性糖的重均相对分子质量为1,582Da。比较添加与不添加中性木聚糖酶
With the development of bio-technology, the application of xylanase has progressivelyexpanded. Nowadays, xylanase is successfully applied in the paper-making, food andpharmaceautical industries. By virtue of its application in the food industry, the need for it to bestudied extensively. This paper reports studies on partial characterization of neutral xylanase and itsapplication in bread making and instant baked barley beverage making.
    Initially, the activities of neutral xylanase, pectinase and cellulase were determined in theenzyme preparations. The activity of neutral xylanase as determined by DNS method was foundto be 4460±65 U/g at pH 6.4 and 50℃ with birch xylan as substrate;however, the activities ofboth pectinase and cellulase were less. Next, partial properties of neutral xylanase such as itsoptimal temperature, optimal pH, temperature stability and pH stability were investigated. Theoptimal temperature and pH of the neutral xylanase were 55℃ and pH 6.4, respectively. Xylanasewas stable in the range of pH 3.2~6.4 at 25℃ over a 10hr period. However, in the pH range from7.2 to 10.4, its inactivation rate increased slowly, although all the inactivation rates were small.Neutral xylanase was heat-stable in the temperature range 30 to 50℃ but was completelyinactivated at 70℃ in 5min. Moreover, the rate of enzyme denaturation increased rapidly withcorresponding increase in temperature above 50℃.
    Based on its partial characterization, the feasibility of application of neutral xylanase as bakingadditive was studied. The farinograph showed that as baking additive its use could improve mixingand enhance the velocity of mixing since dough forming time was reduced by about 50% with30ml/100kg flour addition. Moreover, neutral xylanase not only markedly improved the quality ofbaking and the baked bread, it also led to an increase in the volume and specific volume of bread.Additionally, its use led to a decrease in the hardness and springiness of crumb as well assignificantly reducing retrogradation and staling during the storage period thus prolonging the shelflife of the baked product. The added amount ranged from 5 to 42 ml/100kg wheat flour amongwhich the optimal addition was 30ml/100kg wheat flour.
    Neutral xylanase combined with amylase and proteinase was employed to liquefy baked barleyfor instant beverage. Initially, the barley containing 10±0.20% water was baked by the modifiedbarley-baking equipment;indicating that the optimum condition of baked barley was 178℃ for24min. Next neutral xylanase compounded by amylase and proteinase was added to liquefy bakedbarley. The optimal doses of amylase, xylanase, proteinase were determined to be 1.0%, 1.0% and1.5% ([E]/[S]), respectively;whereas the ratio of sample to water 1:9, pH 6.5, 60℃ and 60minwere the optimal processing parameters. The extraction yield of soluble components of bakedbarley rose to 64~66% based on these optimal processing conditions. After that, instant baked
    barley beverage was prepared by concentration and centrifugal spray drying in order. The dryingconditions were: atomizer air pressure of 0.25Mpa, inlet temperature of 180℃ with an outlettemperature of 80℃. The product had good instantizing property. The wetness, dispersibility, bulkdensity and solubility of the instant beverage were 53.50±2.17S, 12.33±0.58S, 0.4279±0.0034g/ml and 93.66±0.03%, respectively.During the enzymatic degradation of baked barley, the relative viscosity markedly decreased inthe first 10min, the average size of suspended particles in enzymatic degradation system decreasedmore quickly in the first 30min and less quickly in the final 30min. Moreover, the relativemolecular weight of the soluble ingredients evidently decreased. In the soluble ingredients afterenzymatic degradation, the relative molecular weight of most peptides was less than 1,500Da andthe mean relative molecular weight of soluble sugar was 1,582Da. Compared with xylan contents oftwo other samples with/without use of neutral xylanase, the results indicated that the contents ofwater-extractable xylan in beverage of baked barley could be enhanced more than 3 times afterliquefaction when it (neutral xylanase) was employed giving the beverage more functionality.The flavor profile of instant baked barley beverage was caramel and sweet-like aroma. The keyvolatile compounds in the instant beverage were aldehyde (hexanal, nonanal etc.), ketone(3-hydroxy-2-butanone, 1-hydroxy-2-butanone, 3-methyl-1,2-cyclopentanedione etc.), acid (aceticacid, 2-methyl-propanoic acid, 3-methyl-butanoic acid, etc.), pyrazine (methyl pyrazine,2,5-dimethyl pyrazine, 2,3-dimethyl pyrazine, etc.), furan (5-methyl-2(3H)-furanone,2-furan-methanol, 2(5H)-furanone, 5-methyl-furfural, etc.), pyrrole (5-methyl-1H-pyrrole-2-carbox-aldehyde, etc.). The volatile compounds of three samples, including baked barley,enzyme-extracted solution and instant beverage, were compared. It was found that flavor precursors,for example aldehyde, ketone, pyrazine and furan produced in the course of baking of the barleyand that aroma could increase in the course of enzymatic degradation of baked barley since theconcentration of heterocyclic compounds increased markedly. Lastly, the pleasant instant beverageflavor was formed after spray drying of enzyme-extracted solution. Owing to evidence of therelease of xylose and arabinose when xylan was degraded by xylanase, xylanase could enhance theflavor of instant baked barley beverage.
引文
[1] John R. Whitaker, Alphons G. J. voragen, Dominic W. S. Wong. HandBook of Food Enzymology[M]. Marcel Dekker, Inc New York, 2003: 879-905.
    [2] 杨淑慈主编. 植物纤维化学 (第二版)[M]. 北京: 科学出版社,2001:214, 228-229
    [3] Wong, K.K.Y, Tan, L.U.L., Saddler, J.N. Multiplicity of β-1,4-xylanase in microorganisms: functions and applications[J]. Microbial Rev., 1988, 52(3): 305-317
    [4] Bilely, P. Microbial xylanolytic systems[J]. Trends in Biotechnology, 3(1985): 286-290
    [5] Kulkarni, N., Shend, Y.E.A, Rao, M. Molecular and biotechnological aspects of xylanases[J]. FEMS Microbiol Rev, 1999, 23: 411-456
    [6] Bernger, J. F., C. Frixon, J. Bigliardi, and N. Creizet. Production, purification and properties of thermostable xylanase from Clostridium stercorarium. Can. J. Microbiol. 1985(31): 635-643.
    [7] 刘明启, 孙建义, 许英蕾. 木聚糖酶分子进化的研究进展[J]. 中国生物工程杂志,10(2003):62-66
    [8] Gilkes, N.R, Henrissat, B., Miller, R. C., et al. Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families[J]. Microbiol Rev, 1993, 55(2):303-315
    [9] Wen Pin Chen, masaru Matsuo and Tsuneo Yasui. Purification and some properties of β-1,3-xylanase from Aspergillus teeccus A-07[J]. Agric. Biol. Chem,1986, 50(5): 1183-1194
    [10] Toshiyoshi Araki, Shuji Tani, Keiko Maeda,Shinnosuke Hashikawa, Hiroki Nakagawa and Tatsno morishita, purification and characterzition ofβ-1,3-xylanase from a marine bacterium, Vibrio sp. XY-214[J]. Biosci. Biotechnol. Biochem. 1999, 63(11): 2017-2019
    [11] Petit-Benvegen, M.D., Souau, X. Solubilization of arabinoxylans from isolated water-unextractable and wheat flour doughs by cell-wall-degrading enzymes[J]. Cereal Chemistry 75(1998): 551-556
    [12] Courtin, C. M. and Delcour, J. A. Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. Journal of Cereal Science 33(2001): 301-312
    [13] Andrewartha, K.A., Phillips, D.R. and Stone, B.A. Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans[J]. Carbohydrate Research 77(1979): 191-204
    [14] Andorsson, R., Westerlund E., Aman P. Natural variations in the contents of structural elements of water-extractable non-starch polysaccharides in white flour[J]. J. Cereal Sci. 19(1994): 77-82
    [15] Godfrey T and West S. Industrial Enzymology (Second Edition) [M]. New York: Stockton Press, 1996
    [16] 李孝辉. 木聚糖酶在食品及饲料工业上的应用[J]. 粮食与饲料工业, 12(1999): 30-31
    [17] Rombouts, F M. Enzymes in fruit and vegetable juice technology[J]. Process Biochem., 1978, 13:9-13
    [18] Ogasawara H., Takahashi K, Iitsuka K, Ito K, and Ishikawa T. Contribution of Hemicellulase in Shochu koji to the Resolution of Barley in the Shochu Mash[J]. J .Brew. Soc. Japan. 1991 ,86(4) :304~307
    [19] 陆健, 曹钰, 陈坚等. 耐酸性木聚糖酶在清酒酿造中的作用[J]. 食品与发酵工业, 第28卷, 第1期, 2001: 27-30
    [20] Bhat, M.K. Cellulases and related enzymes in biotechnology[J]. Biotechnology Advances 18 (2000): 355–383
    [21] 陆健, 曹钰, 陈坚等. 木聚糖酶的产生、性质和应用[J]. 酿酒, 第28卷, 第6期, 2001: 30-34
    [22] Galante Y M, De Conti A, Monteverdi R. Application of Trichoderma enzymes in food and feed industries[M]. London: Taylor & Francis, 1998, Vol. 2: 327–342.
    [23] Poutanen K. Enzymes: an important tool in the improvement of the quality of cereal foods[J]. Trends Food Sci. Technol, 8 (1997): 300–306.
    [24] 郑建仙. 功能性食品甜味剂[M]. 北京: 中国轻工业出版社,1995
    [25] 陈瑞娟. 新型低聚糖的介绍[J].食品与发酵工业,1993,19(2):82-90
    [26] 许正宏,熊筱晶,陶文沂.低聚木糖的生产及应用研究进展[J].食品与发酵工业,2001,28(1):56-59
    [27] Patrice Pellerin, Michele Gosselin, Jean-Paul Lepoutre, Eric Samain and Philippe Debeire. Enzymic production of oligosaccharides from corncob xylan[J]. Enzyme Microb. Technol. 1991, Vol.13(8): 617-621.
    [28] Brodel,B., Samain, E. and Debeire, P. Regulation and optimization of xylanase production in Clostridium thermolacticun [J]. Biotech. Letter, 1990,12: 65-70.
    [29] 胡克, 蔡敬民, 张洁等. 黑曲霉木聚糖酶的底物特异性和低聚木糖生产[J]. 工业微生物, 2002, 30(1): 18-20
    [30] 石波, 李里特. 玉米芯酶法制备低聚木糖[J]. 中国农业大学学报, 2001, 6(2): 92-95
    [31] 王海, 李里特. 用玉米芯酶法制备低聚木糖[J]. 食品科学, 2002, 23(5): 81-83
    [32] 薛业敏, 毛忠贵, 邵蔚蓝. 利用玉米芯木聚糖酶法制备低聚木糖的研究[J].中国酿造, 6(2003): 7-9
    [33] 黄家骥, 许正宏, 陶文沂. 以 Bacillus pumlis.木聚糖酶水解玉米芯制备木寡糖[J]. 食品与发酵工业, 2004, 30(5): 5-9
    [34] 郭夏丽, 刘新育, 陈红歌. 微生物酶法生产低聚木糖条件的研究[J]. 食品与发酵工业, 2002, 29(9): 57-59
    [35] 张艳艳, 薛文通, 汪正强等. 卷须链木聚糖酶水解玉米芯汽爆液及酵母发酵精致低聚木糖[J]. 食品与发酵工业, 2004, 30(4): 12-16
    [36] 怀文辉,何秀萍,郭文浩等. 微生物木聚糖降解酶研究进展及应用前景[J]. 微生物学通报,2000,27(2):137-139
    [37] 张红莲,姚文斌,范云六等.木聚糖酶的分子生物学及其应用[J]. 生物技术通讯,3(2002):23-26
    [38] 侯丙炎. 木聚糖酶及其应用[J]. 动物科学与动物医学,2002,19(4):52-53
    [39] Wong, K.K.Y., Saddler, J.N. Application of hemicellulases in the food, feed, and pulp and paper industries[J]. Hemicellulose and Hemicellulases, 1993: 127-143
    [40] Izydorczyk, M. S., Biliaderis, C. G. Cereal Arabinoxylans: Advances in Structure and Physicochemical Properties[J]. Carbohydrate Polymers, 28(1995): 33-48
    [41] Gruppen, H., Hamer, R.J. and Voragen, A.G.J. Water-unextractable cell wall material from wheat flour. I. Extraction of polymers with alkali [J]. Journal of Cereal Science 16(1992): 41-51
    [42] Qisi, J. Synergistic effects of enzymes for bread making [J]. Cereal Food World, 42(1997): 802-807
    [43] Krishnarau, L. and Hoseney, R.C. Enzyme increase loaf volume of bread supplemented with starch tailing and insoluble pentosan [J]. J. Food. Sci., 59(1994): 1251-1254
    [44] Rasco, B.A., Borhan, M., Yegge, J.M. et al. Evaluation of enzyme and chemically treated wheat bran ingredients in yeast-raised breads [J]. Cereal Chem. 68(1991): 285-299
    [45] Rouau,X. and Moreau, D. Modification of some physicochemical properties of wheat flour pentosans by an enzyme complex recommened for baking[J]. Cereal Chem. 70(1993): 626-632
    [46] Rouau,X. Investigations into the effects of an enzyme preparation for baking on wheat flour dough pentosans[J]. Journal of cereal science 18(1993): 145-157
    [47] Jelaca, S.L. and Hlynca, I. Water binding capacity of wheat flour crude pentosans and their relation to mixing characteristics of dough [J]. Cereal Chemistry 48 (1971): 211–222
    [48] Courtin, C. M. and Delcour, J. A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making[J]. J. Cereal Sci. 35(2002): 225-243
    [49] Courtin, C.M., Gelders, G.G. and Delcour, J.A. The use of two endoxylanases with different substrate selectivity provides insight into the functionality of arabinoxylans in wheat flour bread making[J]. Cereal Chemistry 78 (2001)
    [50] 周素梅,王璋,许时婴. 小麦面粉中阿拉伯木聚糖酶解性质的研究(I)—水溶性阿拉伯木聚糖的酶解[J]. 中国粮油学报,2000,15(3):13-17
    [51] Gan, Z., Ellis, P.R. and Schofield, J.D. Mini review: gas cell stabilisation and gas retention in wheat bread dough[J]. Journal of Cereal Science 21 (1995) 215–230.
    [52] 周素梅,王璋,许时婴.小麦粉中阿拉伯木聚糖氧化胶凝性质的研究[J]. 中国粮油学报,2003,18(4):18-21
    [53] 周素梅,王璋,许时婴. 小麦面粉中阿拉伯木聚糖酶解性质的研究(Ⅱ)—水不溶性阿拉伯木聚糖的酶解[J]. 中国粮油学报,2000,15(5):27-32
    [54] Autio, K., Harkonen, H., Parkkonen, T., Frigard, T., Poutanen, K., Siikaaho, M. and Aman, P. Effects of purified endo-beta-xylanase and endo-beta-glucanase on the structural and baking characteristics of rye doughs[J]. Lebensmittel-Wissenschaft and Technologie – Food Science and Technology 29 (1996): 18–27.
    [55] 周素梅, 王璋, 许时婴. 面包制作过程中戊聚糖酶的作用机理[J]. 无锡轻工大学学报,2001, 20(3): 275-279
    [56] Sprossler, B.G. Xylanases in baking. In ‘The first European symposium on enzymes and grain processing' (S.A.G.F. Angelino et al., eds.), TNO Nutition and Food Research Institute, Zeist, The Netherlands (1997): 177-187
    [57] 周世英,钟丽玉. 粮食学与粮食化学[M]. 北京:中国商业出版社,1987:41-46
    [58] 浙江省农业科学院.中国大麦品种资源目录[M]. 西宁:青海人民出版社,1983
    [59] 中国医学科学院卫生研究所编著. 食物成分表[M]. 北京:人民卫生出版社,1980:4-18
    [60] N.L.KENT and A.D.EVERS. TECHNOLOGY OF CEREALS (Fourth Edition): An Introduction for Students of Food Science and Agriculture[M].Oxford:Pergamon Press,c1993: 78-102,276-301
    [61] 崔述生,张浩主编. 精编本草纲目[M]. 北京:中医古籍出版社,1999:202
    [62] Kahlon, T.S. and Wooduff, C.L. In vitro binding of bile acids by rice bran,oat bran, barley and β-glucan enrich barley[J]. Cereal Chemistry, 2003, 80(3): 260-263
    [63] Graham Wallace et al. Extraction of phenolic-carbohydrate complexes from graminaceous cell walls[J]. Carbohydrate Research,272(195): 41-43
    [64] Maria Hrmova et al. Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls [J]. International Journal of Biological Macromolecules 21(1997): 67-72
    [65] 陈茂生等. 膳食纤维的功能及其开发研究[J]. 食品科技, 1(2000):23-24
    [66] 陈洪金,曹蕾. 大麦保健茶的研究[J]. 粮食与饲料工业,10(1998): 45-46
    [67] 陆晓滨,董贝磊,董贝森. 大麦茶饮料的研制[J]. 粮食与饲料工业,8(1998): 39-40
    [68] 杨天保,吴西昆,熊卫东等. 大麦茶的研制[J]. 饮料工业,1998, 1(4):40-41
    [69] http://info.med.sinobnet.com/html/001/005/001/31728.htm
    [70] http://www.xingtaikj.com/tek/Q4/12.htm
    [71] John Wiley and Sons. Industrial Enzymes And Their Applications [M]. Helmut Uhlig,1998: 277-278
    [72] Courtin, C. M. and Delcour, J. A. Physicochemical and breadmaking chatacteristics of low molecular weight wheat derived arabinoxylans[J]. Journal of Agricultural and Food Chemistry 46(1998): 4066-4073
    [73] Ceirwyn, S. James. Analytical Chemistry of Foods[M]. Chapman and Hall(Pub);1994:124-125
    [74] 史锋, 王璋. 混合非淀粉多糖水解酶酶活测定方法的改进[J]. 食品科学, 2002, 23(3): 121-126
    [75] Ghose T K. Measurement of cellulase activities[J]. Pure & Appl. Chem,1987, 59(2): 257-268
    [76] 王璋. 食品酶学[M]. 北京:中国轻工出版社,1990: 100-112
    [77] Weijers, S. R. and Riet, K.V. Enzyme Stabilization: Stability in downstream Processing, Part 1: Enzyme Inactivation, Stability and Stabilization[J]. Biotech. Adv., 1992,10: 237-249
    [78] Fagain. C.O. and Kennedy, R.O.Functionally-stabilized Proteins-A Review [J]. Biotech. Adv. 1991.9:351-409
    [79] 史锋, 王璋, 许时婴. 流化床涂布法制备稳定化酶[J]. 食品工业科技, 2002,23(3): 12-14
    [80] Izydorrczyk, M. S., Biliader, C. G. Cereal Arabinioxylans: Adances in Structure and Physicochemica Properties[J]. Carbohydrate Polymers, 1995(28): 33-48
    [81] Andorsson, R. Westerlund, E. and Aman, P. Natural Variations in the Contents of Structral Elements of Water-extractable Non-starch Polysaccharides in White Flour[J]. J.Cereal Sci.19 (1994): 77-82
    [82] 周素梅. 面包业酶制剂发展和研究现状[J]. 粮油食品科技,1998(5): 23-24
    [83] 周素梅, 王璋, 许时婴. 氧化酶在面团体系中对阿拉伯木聚糖性质影响的研究[J]. 郑州工程学院学报,2002,23(3):28-31,49
    [84] 中华人民共和国国家标准. 小麦面粉吸水量和面团揉和性能测定法:粉质仪法. GB/T 14614-93,ISO5530-1—1988,ISBN7-5066-1104-X/TB-426:218-222
    [85] J. Qi Si. Synergistic Effect of Enzymes for Bread-making [J]. Cereal Foods World 42 (1997): 802-807
    [86] Marta S. Izydorrczyk &Costas G. Biliader. Influence of Structure on the Physcicochemical Properties of Wheat Arabinoxylan[J]. Carbohydrate Polymers, 17(1992): 237-247
    [87] Schiraldi, A., Piazza, L. and Riva, M. Bread Staling: A Calorimetric Approach [J]. Cereal Chemistry 73(1996): 32-39
    [88] AACC 方法 10-10A. 74-10 美国谷化协会审批方法. 1983.3. 第八版
    [89] 大连轻工学院等合编.食品分析[M].北京:中国轻工业出版社,1994 年版
    [90] Delcour, J.A., Vanhanel, S. and Greest, C.D. Physico-Chemical and Functional Properties of Rye Nonstarch Polysaccharides.1: Colorrimetric of Pentosans and Their Relative Monosaccharides Composition in Fractional Rye Products[J]. Cereal Chemistry, 1989, 66: 107-111
    [91] 张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1999
    [92] 吴有炜.试验设计与数据处理[M]. 苏州:苏州大学出版社,2002 版:251-255,263-271
    [93] 林弘通(日)著,乳粉制造工程[M],北京:轻工业出版社,1987
    [94] 秦蓝, 许时婴, 王璋. 采用酶法液化技术生产高品质南瓜汁[J]. 食品与发酵工业, 2003, 29(12)
    [95] 王素雅, 王璋, 许时婴. 酶法生产澄清型香蕉汁[J]. 食品科技, 2002(7): 44-46
    [96] 方忠祥, 倪元颖. 紫肉甘薯饮料加工技术[J]. 食品工业(上海), 2004, 25(2): 9-10
    [97] 田怀香, 王璋. 酶法生产混浊银杏饮料[J]. 食品工业科技, 2002, 23(9): 57-59
    [98] 何曼君. 高分子物理(修订版)[M]. 上海:复旦大学出版社, 1990
    [99] Kataoka, H., Lord, H.L. and Pawliszyn, J. Applications of Solid-phase microestraction in food analysis[J]. J. Chromatography A, 2000, 880:35-62
    [100] Owen R.Fennema 著.王璋,许时婴,江波等译.食品化学(第三版)[M].北京:中国轻工出版社,2003
    [101] 丁耐克. 食品风味化学[M]. 北京:中国轻工出版社,1996
    [102] A. Marco, J.L. Navarro, M. Flores. Volatile compounds of dry-fermented sausages as affected by solid-phase microextraction (SPME) [J]. Food Chemistry, 84 (2004) : 633–641
    [103] Adamsa, J.B., Browna, H.M, Ledwardb, D.A. Turnerb, R. Heat-inactivated peroxidases and the role of calcium abstraction as a cause of their enhanced lipid oxidation activity: potential effects on the favour quality of heat-processed vegetables[J]. Food Chemistry, 80 (2003) : 499–510
    [104] Pekka, L., Katja, K., Ilkka, L. and Simo, L. Effect of Heat Treatment on Lipid Stability in Processed Oats[J]. Journal of Cereal Science, 37 (2003): 215-221
    [105] Ahmed E. Abdalla, Jacques P. Roozen. Effect of plant extracts on the oxidative stability of sun ower oil and emulsion[J]. Food Chemistry, 64 (1999) 323-329
    [106] Semwal, A.D., Sharma, G.K & Arya, S.S. Flavour degradation in dehydrated convenience food: changes in carbonyls in quick-cooking rice and Bengalgram dhal. Food Chem. 57(1996): 233-239
    [107] Apryll, M.S., Mary, P.G., Daniel W.A. et al. Enantiomeric separation chiral components reported to be in coffee,tea or cocoa[J]. J. Agric. Food Chem. 41(1993): 1684-1689
    [108] Mottram, D.S. Flavour formation in meat products: a review. Food Chem. 62(1998): 415-424
    [109] Chiu, E.M., Kuo, M.C., Bruechert, L.J. et al. Substitution of pyrazines by aldehydes in model system[J]. J. Agric. Food Chem., 38(1990): 58-61
    [110] Chen, J. and Ho, C. T. Comparision of volatile generation in serine/threonine/glutamine -ribose/ glucose/fructose model systems[J]. J. Agric. Food Chem., 47(1999): 643-647
    [111] Chen, Q.Y. Effect of amide content in wheat gluten hydrolysates on the thermal flavor generation. PhD thesis. Rotgers University, USA
    [112] 藤原正生等. 夏云译. 香料科学[M]. 北京:中国轻工业出版社,1987
    [113] Matia, C.A.B., Trugo, L.C., Aquino Neto F.R. et al. Composition of green coffee water-soluble fractions and indetification of volatiles formed during roasting [J]. Food Chem. 55(1996): 203-207
    [114] Roy Teranishi, Emily L. Wick and Irwin Hornstein. Flavor chemistry [M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [115] Hurrel, R.F. Maillard reaction in flavor, in food flavors[M]. Edit by I.D. Morton and A.J.Macleod, Elsevier Scientific Publishing Company, Netherland. 1982
    [116] 杨瑞金, 许时婴, 王璋. 低聚木糖的酶法生产[J].无锡轻工大学学报, 2000, 19(4): 340-344
    [117] 陈晓玲, 王璋, 许时婴. 应用模糊数学评价微胶囊化桔油的感官品质[J].无锡轻工大学学报, 2004, 23(3): 69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700