用户名: 密码: 验证码:
营养液调控对生菜生长和硝酸盐积累的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验利用水培方式研究了营养液调控对生菜(Lactuca sativa L.)生长、产量及品质的影响。试验由采收前不同停止营养液供应时间、营养液浓度分段管理、不同氮素形态配比和不同营养液浓度四部分组成。
     1.研究了采收前停止营养液供液时间(12天,8天,4天,0天)对生菜(品种为‘弘农’和‘青丰’)的生长和品质影响。结果表明,采收前停止营养液供液时间超过8天时,地上部的鲜重、干重、叶片数、叶长、叶宽、叶片含水量均随着停液时间的延长而显著降低,而根的鲜重、干重和根冠比则显著增加;与对照(停液0天)处理相比,采收前4天停止营养液供应对生菜的生长无显著影响。生菜叶片中的硝酸还原酶活性、可溶性糖含量随着采收前停止营养液供应时间的延长而显著增加,而生菜体内硝酸盐含量则显著降低,采收前4天停止营养液对可溶性蛋白和维生素C含量没有显著影响,但停止营养液时间超过8天时则显著降低了生菜体内可溶性蛋白和维生素C含量,表明采收前停液4天处理是比较适合生菜水培的方法。随着停止营养液时间的加长,生菜叶片和根中的有机氮、磷、钾、钙、镁含量都逐渐降低。
     2.采用营养液浓度分段管理(1s-1s-1s;2s-1/2s-1s;1s-2s-1/2s;1/2s-1s-2s)即采用了四种浓度管理模型(对照;高-低-中;中-高-低;低-中-高)对生菜(品种为‘弘农’和‘青丰’)研究了其对生菜生长和品质的影响。结果表明,“中-高-低”和“低-中-高”浓度管理模型显著增加了地上部和根的鲜重和干重,而“高-低-中”浓度管理则显著抑制了生菜地上部和根的生长。在生菜的三个不同生长发育时期,早期低营养液浓度管理可促进生长,高浓度不利于鲜重、干重和叶面积的增加,中期和后期高浓度管理显著促进地上部鲜重、干重和叶面积的增加。“中-高-低”浓度管理模型显著降低了生菜采收期叶片的硝酸盐含量并增加了硝酸还原酶活性,而“低-中-高”浓度管理则极显著提高了生菜体内硝酸盐含量。“中-高-低”和“低-中-高”浓度管理显著提高了生菜的可溶性糖、可溶性蛋白和维生素C的含量,地上部和根中氮和磷的含量也显著增加,但降低钾、钙和镁的含量。“中-高-低”浓度分段管理是适合生菜水培的浓度管理模式。
     3.利用4种不同氮素形态配比(NO_3~-—N∶NH_4~+—N分别为100∶0,75∶25,50∶50和0∶100)研究了不同氮素形态对水培生菜(品种为“弘农”和“绿领”)生长和品质的影响。结果表明,随着氮素中氨态氮比例的增加,地上部和根的鲜重、干重逐渐降低,叶片数、叶长、叶宽、叶片含水量均显著降低,而根冠比则随着氨态氮比例的增加而上升;不同氮素形态配比处理对地上部生长的影响在定植10天后才表现出显著差异。随着氨态氮比例的增加,生菜中硝酸盐含量逐渐降低,硝酸还原酶活性则逐渐增加。叶绿素含量也随着铵态氮比例的增加而增加。随着氮素中氨态氮比例的增加,SOD和POD活性逐渐增加,完全氨态氮处理下SOD和POD活性最高。
The effects of nutrient solution supply on the growth, nitrate accumulate and quality of lettuce (Lactuca sativa L.) were studied by means of water culture in this paper. The research includes four parts: The effect of different stop solution concentration supply times on lettuce before harvest; The effect of The effect of different N forms on lettuce; The effect of different solution concentration on lettuce. The results are as follows:1. Effects of four stopping nutrient solution times before harvest (0d;4d;8d;12d) on the lettuce (cv. Hongnong and Lvling) growth , nitrate accumulate, quality and mineral nutrient were investigated. The results showed that the times of stop the nutrition solution over 8 days, the fresh and dry weights of shoot, leaf s number , leaf length , leaf width and Shoot water content decreased gradually, whereas the fresh and dry weights of root, root/shoot ratio increased significantly. The times of stop the nutrition solution is 4 days, no effect significantly on growth of lettuce. The nitrate content and soluble sugar decreased significantly with increasing of times of stop the nutrition solution, whereas the nitrate reductase increasing significantly. When the times of stop the nutrition solution over 8 days, the soluble protein and vitamin C decreased significantly, whereas the times of stop the nutrition solution is 4 day, no effect significantly on the soluble protein and vitamin C of lettuce. N, P, K, Ca, Mg of shoot and root decreased significantly with increasing of times of stop the nutrition solution.2. Effect of different solution concentration in different stage (1s-1s-1s; 2s-1/2s-1s; 1s-2s-1/2s;1/2s-1s-2s) mean three nutrition solution concentration models (H-L-M; M-H-L; L-M-H) and the control on the lettuce (cv. Hongnong and Lvling) growth, nitrate accumulate, quality and mineral nutrient were investigated. The results showed that "M-H-L; L-M-H" made fresh weight and dry weight of shoot and root increase significantly, whereas "H-L-M" decrease significantly. The nitrate content of "M-H-L" decrease significantly, but the nitrate reductase increase significantly, whereas the nitrate content and the nitrate reductase all increase significantly. soluble sugar, soluble protein , vitamin C, N and P of "M-H-L; L-M-H" increase significantly, but K , Ca and Mg decreased significantly,whereas nutrition solution concentration models "H-L-M" was contrast with "M-H-L; L-M-H".3. Effects of four nitrogen forms (NO_3~-—N:NH4~+—N were 100:0, 75:25, 50:50 and 0:100, respectively)on the lettuce (cv. Hongnong and Lvling) growth and the activity of protectiase enzymes were investigated. The results showed that the fresh and dry
    weights of shoot and root decreased with increasing of ammonium nitrogen form, leaf number, leaf length, leaf width and leaf water content also decreased significantly, whereas root/shoot ratio increased, difference between different treatments on the shoot growth was only significant ten days after transplanting. SOD and POD activities increased with increasing of ammonium nitrogen form. Different nitrogen forms had no significant influence on the MDA content 13 days within transplanting, but for the treatments of complete ammonium nitrogen and NO"3 — N:NH+4 — N(50:50), MDA content increased sharply 10 days after transplanting. The leaf nitrate content was the highest in the complete nitrate nitrogen treatment, and it decreased with increasing of ammonium nitrogen form, the contents of soluble sugar and soluble protein were the highest in the treatment of NO3"-N:NH4+-N(75:25).4. Effect of four nutrient solution concentration (l/4s, l/2s, Is, 2s) on the lettuce (cv. Hongnong and Lvling) growth, nitrate accumulate, quality, mineral nutrient and the activity of protectiase enzymes were investigated. l/2s made the fresh and dry weights of shoot and root, leafs number, leaf length, leaf width and Shoot water content increasing gradually. The rest are Is, l/4s and 2s. The nitrate content and the chlorophyll content increasing significantly with increasing of the nutrition solution concentration. TTie SOD activities of 2s changed low into high from the seedling period to harvest period. The MDA content of 2s was more significantly than the control, whereas the MDA content l/2s was less than the control. The nitrate content, soluble sugar, soluble protein and vitamin C of lettuce of 2s increasing significantly, whereas l/2s decreased significantly. N, P, K, Ca of l/2s in shoot and root increasing significantly, Mg of shoot and root decreased significantly with increasing of the nutrition solution concentration.
引文
1.艾绍英,王美丽,姚建武等.氮素营养条件对菜心吸收矿质养分的影响及其与硝酸盐累积的关系.农业环境科学学报,2003,22(5)578~581
    2.艾绍英,姚建武,黄小红.蔬菜硝酸盐的转化特性研究.植物营养与肥料学报,2002,8(1):40~43
    3.鲍士旦.土壤农化分析.中国农业出版社,2000,12
    4.别之龙,伊东正.Na_2SO_4和NaHCO_3对生菜生长和无机成份的影响.农业工程学报,2002,(8):265~268
    5.曹翠玲,李生秀.氮素形态对作物生理特性及生长的影响.华中农业大学学报,2004,5(23):581~586
    6.曹翠玲,李生秀.氮素形态对小麦中后期的生理效应.作物学报,2003,2(29):258~262
    7.陈贵林,高秀瑞.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响.中国农业科学,2002,35(2):187~191
    8.陈振德,程炳嵩.蔬菜中硝酸盐及其与人类健康.中国蔬菜,1988,(1):40~42
    9.曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响.土壤学报,2003,4(23):295~298
    10.董晓英,李式军.采前营养液处理对水培小白菜硝酸盐累积的影响.植物营养与肥料学报,2003,9(4):447~451
    11.杜秀敏,殷文璇,赵彦修等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121~125
    12.樊明寿,孙亚卿,邵金旺等.不同形态氮素对燕麦营养生长和磷素利用的影响.作物学报,2005,1(31):114~18
    13.范双喜.不同营养液浓度对莴苣生长特性的影响.园艺学报,2003,30(2):152~156
    14.高秀瑞,陈贵林.甘氨酸部分代替硝态氮对不结球白菜和生菜生长及硝酸盐积累的影响.河北农业大学学报,2003,26(1):40~43
    15.高祖明,张耀东等.氮磷钾对叶菜硝酸盐积累和硝酸还原酶和过氧化物酶活性的影响.园艺学报,1989,16(4):293~297
    16.郭世荣.无土栽培学.北京,中国农业出版社,2003.
    17.何天秀,何成辉,吴得意.蔬菜中硝酸盐含量及其与钾含量的关系.农业环境保护,1992,11(5):209~211
    18.胡承孝,邓波儿,刘同仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响.华中农业大学学报,1992,11(3):239~243.
    19.胡勤海,叶兆杰,马生良.杭州市蔬菜硝酸盐污染现状与防治对策.环境污染与防治.1991, 13(4):5~8
    20.黄建国,袁玲.重庆市蔬菜硝酸盐、亚硝酸盐含量及其与环境的关系.生态学报,1996,4:384~388
    21.黄启文,周兆德,李天贵.钼锰微肥对小白菜产量和品质的影响.湖南农学院学报,1991,17(增刊):400~402
    22.葸玉琴,张金文,牛俊义.硫,6—BA,水分和温度对春小麦硝酸还原酶活性的影响.甘肃农业大学学报,1996,31(3):268~272
    23.蒋卫杰,郑光华,汪浩等.有机生态型无土栽培技术及其营养生理基础.园艺学报,1996,23(2):139~141
    24.李合生,陈翠莲,洪玉枝等.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    25.连兆煌,李式军.无土栽培原理与技术.北京:中国农业出版社,1994.
    26.刘明月,秦玉芝,蔡雁平等.N、P、K施用量与芹菜硝酸盐积累和产量的相关性.中国蔬菜,1998,(6):4~7
    27.刘士哲.现代实用无土栽培技术.北京:中国农业出版社,2001
    28.马国瑞,石伟勇,李春九等.杭州市郊蔬菜中及Vc含量的研究.浙江农业科学,1995,1:10~14
    29.彭长连,林植芳,林桂珠等.人为干扰对亚热带森林木本植物叶片抗氧化能力的影响.生态学报,1998,1(18):101~106
    30.任华中,张福墁.不同形态氮素对基质栽培甜椒生长发育的影响.中国农业大学学报.1992,18(3):275~279
    31.尚庆茂,高丽红.硒素营养对水培生菜品质的影响.中国农业大学学报,1998,3(3):67~71
    32.沈明珠,瞿宝杰,东惠茹.蔬菜硝酸盐积累的研究(1):不同蔬菜硝酸盐和亚硝酸盐含量及其卫生评价.园艺学报,1982,9(4):41~48
    33.石海仙,伊东正.NaCl添加和营养液浓度对番茄产量和品质的影响.中国蔬菜,2001,(4):9~11
    34.寿森炎 董伟敏.氮素形态不同配比对黄瓜生长和性别分化的影响(初报).园艺学报,1996,23(1):49~53
    35.孙红梅,李天来,须晖.不同氮水平下钾营养对大棚番茄产量及品质的影响.沈阳农业大学学报,2000,31(1):68~71
    36.谭学文等.水培甜瓜对营养液及主要矿质元素的吸收特性.西北农学报,1996,11(3):101~105
    37.陶正平,边鸣镝,李梦玲.提高氮素水平对水培小白菜生长及硝酸盐含量的影响.吉林农业大学学报,2001,23(2):46~49
    38.田吉林.番茄无土基质栽培的营养特性.上海农业学报,2001,17(3):76~79
    39.田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望.上海农业学报,2000,16(4): 87~92
    40.田霄鸿,李生秀,王朝辉.莴笋对不同形态氮素的反应.应用生态学报,2003,14(3):377~381
    41.田霄鸿,王朝辉.不同氮素形态及配比对蔬菜生长和品质的影响.西北农业大学学报.1999,27(2):6~10
    42.汪李平,向长萍,王运华.白菜不同基因型硝酸盐含量差异的研究.园艺学报.2004,31(1):43~46
    43.汪李平,向长萍,王运华.小白菜硝酸盐含量基因型差异的生理机制研究.华中农业大学学报,2003,9(4):442~446
    44.王景安,程炳蒿.叶菜类不同生育期体内硝酸盐、亚硝酸盐及Vc含量的变化.河北农业技术师范学院学报,1989,3(2):33~37
    45.王秀峰,张光星,伊东正.蔬菜收获前营养液中Cl~-,SO_4~(2-)浓度对叶内NO_3~-含量及叶片生长的影响.园艺学进展(第二辑),南京:东南大学出版社,1998:607~612
    46.肖晓玲.生菜无机养分吸收特性的研究湖南农业大学学报,1999,25(2):103~107
    47.邢禹贤.新编无土栽培原理与技术.北京:中国农业出版社,2002
    48.许长蔼.植物体内NO_3~-可给性对硝酸还原酶活性的调节.植物生理学通讯,1991,27(3):173~177
    49.徐卫红,王正银,林春云.液培条件下养分组成对叶菜硝酸盐及营养品质的影响.农业环境学报,2002,21(4):322~324 ’
    50.殷宏章.罗宗洛文集.北京P科学出版社,1988.
    51.张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响,园艺学报 2003,30(1):93~94
    52.张振贤等.蔬菜生理.中国农业出版社,1993
    53.郑光华,刘广树.国内外无土栽培的现状与展望.中国蔬菜,1992,(增刊):4~7
    54.郑相穆,谷丽萍 周阮宝等.钼对降低普通白菜叶片硝态氮的作用.植物生理学通讯,1995,31(2):95~96
    55.周根娣,卢善玲.上海市蔬菜中硝酸盐含量及加工处理后硝酸盐和亚硝酸盐含量.环境污染与防治,1989,16(6):31~32
    56.邹春琴,王晓凤,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨.植物营养与肥料学报,2004,10(1):82~85
    57.朱祝军,蒋有条.不同形态氮素对不结球白菜生长和硝酸盐积累的影响.植物生理学通讯,1994,30(3):198~201
    58.板木利隆,佐佐木浩二,宇田川雄二.氧液栽培实用技术.晨业电化协会,1995,1~16
    59.但野利秋.水稻铁过剩障害的研究.北海道大季晨学部邦文纪要,1976,10:22~67
    60.掘裕.蔬菜.花卉耕栽培.东京:养贤堂,1966,71~72
    61.尾形昭逸.作物生育对态室素硝酸态室素营养生理的意义关研究.(第二版).日本土壤肥料学杂志,1963,34(9):318~322
    62.山崎肯哉.养液栽培全编,博友社,1982
    63.武川满夫.水耕栽培百科.富民协会,1993
    64.伊东正.善液栽培21.诚文堂新光社,1997
    65. Adams P. Some responses of lettuce, grown in beds of peat, nitrogen, potassium, magnesium and molybdenum. Journal of Horticultural Science,1978,(53):275~281
    66. Adaims P. Effect of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, guality and composition of tomato growth in rockwool.J.Hort.Sci,1991, 66 (2):201~207
    67. Aron D I. Ammonium and nitrate nitrogen of barley at different seasons in relation to hydrogen-ion concentration, manganese, copper and oxygen supply. J. Plant. Nutr., 1973,44:111~120
    68. Aslan M, Travis R L, Huffaker R C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barely seedlings. Plant Physiol,1992, 99:1124~1133
    69. Banuls J, et al. Salinity-calcium interactions on growth and ionic concentrations of citrus plants[J]. Plant and Soil, 1991,133: 39~46
    70. Bangerth F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopath, 1979, 17: 97~122
    71. Bellaloui N, Pilbeam D J. Effects of nitrate withdrawal and resupply on the assimilation of nitrate in leaves of tomato. J. Exp. Bot., 1991, 4(4):27~30
    72. Benoit F, Ceustermans N. Cooling and UVc-disinfection with NFT-tomato Proeftuinnieuws, 1994,4(10):30
    73. Blom-Zandstra M. Nitrate concentration and reduction in different genotypes of lettuce. J Amer Soc Hort Sci, 1986,11(6):908~911
    74. Blom-Zandstra M. Lampe JEM. The role of nitrate in the osmoregulation of lettuce growth at different light intensities. J. Exp. Bot., 1985,36: 1043~1052
    75. Blom-Zandstra M., Lampe J.E.M, Ammerlaan H.M. C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing light intensity. Physiol. Plant., 1988,(74):147~153.
    76. Bradfield EG, Guttridge G. Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Scientia Hortic.1984,22:207~217
    77. Burns I G, Lee A, Hardgrave M. et al. Uptake and utilization of nitrate by soil-grown glasshouse lettuce: Implications for Good Agricultural Practice, In: plant nutrition for the next millennium:
    ??Nutrients, yield, quality and the environment. Proceedings of Xth International Colloquium for the Optimization of Plant Nutrition, Cairo, Egypt, 2000,4:8~3
    78. Cantliffe D J. Nitrate accumulation in spinach cultivars and plant introductions. Canadian J. Plant Sci.,1973,(53):365~367
    79. Charaf, AR, Hobson GE. Effect of salinity on the yield and quality of normal and non-ripening mutant tomatoes. Acta. Hort.,1986,190:175~181
    80. Chong PC, Ito T. Growth, fruits yield and nutrient absorption of tomato plant as influenced by solution temperature in nutrient film technique J. Japan. Sec. Hurt. Sci., 1982,51:44—50
    81. Claussen W, Lenz F. Effect of ammonium or nitrate nutrition on net photosynthesis, growth and activity of enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil, 1999,208:95 ~ 102
    82. Cooper AJ. Crop production with nutrient film technique.1973,79:1041 - 1048
    83. Cox J. H .and Reisenauer,S .A .Growth and ion uptake by wheat supplied with nitrogen as nitrate, or ammonium,or bothAgron.J .,2003,68:17~19
    84. Cox,W J.and Reisenauer,H .M .Critical external nitrate or ammonium concentration f or plant growthAgron Abstracts,1971,87~90
    85. Dijkshoon, W. Metabolic regulation of the alkaline efect of nitrate utilization in plants. Nature, 1962,194:165~167
    86. Dijkshoom,W .an dV an-Wijk,A .L . This ulphurre quirementso fp lantsas e videncedb ythe s u lph ur-nitrogenr atioi nth eo rganicm ater:A r eviewo fp ubilshedd ate.P lantS oil,1998,26 :139~157
    87. Drover DP。 The effect of porosity and nutrient solution concentration on the cation composition and root cation exchange capacities of cultivars of fragaria. Comm in Soil Science and Plant Annlysis,1973,4(4):251~258
    88. Echeverria E D. Veicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol, 2000,123:1217-1226
    89. Ehret,D L,HoL C. Translocation of calcium in relation to tomato fruit growth. Ann. Bot., 1986,58:679-688
    90. Ehret, DL, Ho LC. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. hort. Sci.1986b,61:361-366
    91. Errebhi, M. Wilcox, G E. Tomato growth and nutrient uptake patera as influenced By nitrogen form ratio. J. Plant Nutr.,2000,13:1031~1043
    92. Ferrari T E , Yodwe O C, Filner P. Anaerobic nitrate production by plant cells and tissues: Evidence for two nitrate pools. Plant Physiol,1973,51:423~431
    93. Ferrario-Mery S, Murchie E et al. Manipulation of the Pathways of sucrose biosynthesis and nitrogen assimilation in transformed plants to improve photosynthesis and productivity. in: Foyer CH, Quick WP, eds. A molecular approach to primary metabolism in higher plants. London: Taylor & Francis, 1997,125~153
    94. FlugerA L, Rao I M. Effect of N: K ratio in hydroponic situation. Acta Hort.,1980, (98): 161~170
    95. Friedrich J W., L.E. Schrader. Sulfur deprivation and nitrogen metabolism in maize seedlings. Plant Physiol., 1978,61,900~907
    96. Ganmore-Neumann, R. and Kafkafi, U. Root temperature and percentage NO3/NH4 ef fect on tomato plant development. 1.Morphology and growth-Agron.J. ,1980,72 :758~761
    97. Gerendas J, Zhu Z, Bendixen R et al . Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeitschrift fur Pflanzenernahrung and Bodenkunde,1997,160:239~251
    98. Granstedt R C. Huffaker R C. Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiol.,1982,70:410~413
    99. Gunes.A., W.H.K.Post. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. J. Plant Nutr., 1994,17(11):1929~1938
    100. Haynes R J, Goh K M. Ammonium and nitrate nutrition of plant. Bio. Rev.,1998,53:465~510
    101. Hecht, U. and Mohr, H. Factors controlling nitrate and ammonium accumulation in mustard (Sinapisa lba)seedling.P hysol.P lant.,2000,78:379~387
    102. Izawa, S. Good, N. E.. Inhibition of photosynthetic electron transport and photoph osphorylation. Methods Enzymol.,1972,24:55~377
    103. Liu liangxue, Shelp B J. Impact of chloride on nitrate absorption and accumulation by broccoli. Canadian J. Plant Sci. ,1996,(76):367~377
    104. Kagohashi S, Kano H, Kageyama M. Effects of controlling the nutrient uptake on plant growth and fruit quality of muskmelons grown in the autumn and spring. J Japanese Soc. Hort. Sci., 1981,50(3):306~316
    105. Kotsirasa A, Olympiosa C M, Drosopoulosb J et al. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Scientia Horticulturae,2002,95:175~183
    106. Liu W P, Neuman G, Bangerth F et al. Rapid effects of nitrogrn form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 2000,51(343):227~237
    107. Marschner H. Mineral nutrition of higher plants. Harcourt Brace Jovanovich Martin.l986,197~218
    108. Martin P.N. Gent. Solution electrical conductivity and ratio of nitrate to other nutrients affect accumulation of nitrate in hydroponic lettuce. HortScience, 2003,38(2):222~227
    109. Martin R. Broadley, Ido Seginer , Amanda Bums et al .The nitrogen and nitrate economy of butterhead lettuce, J. Exp. Bot., 2003,54(390):2081~2090
    110. Maynard D N, Barker A V, Minotti P L et al. Nitrate accumulation in vegetables. Advances in Agronomy,1976,(28):111~118
    111. Masson J, Tremblay N, Gosselin A. Effects of nitrogen fertilization on the growth of tomato and lettuce transplants in multicopartment trays with or with out supplemental lighting. Can. J. Plant Sci., 1990,70:1199~1205
    112. Mengel K , Kirkby EA . Principles of plant nutrition [M]. International Potash Institute. Berne, Switzerland, 1979,203~210
    113. Miller A J, Smith S J. nitrate transport and compartmentation in cereal root cells. J. Exp. Bot., 1996,47:843~854
    114. Moron-Luques, E.; Zuniga-Rios, D. and Pimentel-Benitez, H. Effect of different nitrogen sources on pigment content of sugarcane.Cienciasd el a Agricultura.1998.38:168~170
    115. Nightingale.G .T. The nitrogen nutrition of green plants.Bet.Rev.,1993,3:135~174
    116. Olday F C. A physiological basic for diffeent patterns on nitrate accumulation in two spinach cultivars. J. Amer. Soc. Hort. Sci.,1976,101 (3):217~219
    117. Ourry A, Gordon A J, Macduff J H. Nitrogen uptake and assimilation in roots and root nodules.in: Foyer CH, Quick WP, eds. A molecular approach to primary metabolism in higher plants. London: Taylor & Francis, 1997,237-253
    118. Pace GM. et al. nitrate reduction in response to CO_2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedling. Plant physiology.l990,92:286~292
    119. Pascale SD, Barbieri G. Effects of soil salinity form long-term ingation with saline-sadic water on yield and quality of winter vegetable crops Sci. Hort.,1995,64:145~157
    120. Petra Mall. UliSehurr. Growth of tobacco in short day conditions leads to high starch, low sugars, altered diurnal changes in the Ni transcript and low nitrate reductase activity and inhibition of amino acid synthesis. Planta, 1998, 207:27~41
    121. Rengel Z The role of calcium in salt toxicity, plant Cell Environ.,1992,15:625~632
    122. Reisenuer,H .M Absoption and utilization of ammonium nitrogen by plants..Nitrogen in the Enviroment, Eds.D .R .Nielsen and T .G .MacDonald. .Soil Plant Nitrogen elationship.Academic Press.NewYork,1973,12:157~170
    123. Rios-Gonzalez K, Erdei L, Lips S H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 2002,162:923~930
    124. Robin L. Walker, Lan G Burns. Jeff Mcorby. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatment. J. Exp. Bot., 2001, 52(355):309~317
    125. Sanatra, C. M., Virmani, O. I and Vlek, P. L. G. Remobilization of nitrogen from senescing leaves of pigeonpea (CajanusC ajan L Millsp): genotypic differences across maturity groups?J. Exp. Bot.,1998,49:853~860
    126. Santamaria, P., Elia, A., Papa, G. and Serio, F. Nitrate and ammonium nutrition in Chicory and Rocket salad plants J.Plant Nutr., 1998, 21:1779~1789
    127. Scaife A. The diurnal pattern of nitrate uptake and reduction by spinach(Spinceia oleracea L.). Ann. Bot.,1994,(73):337~343
    128. Schmerder B, Borriss H. Induction of nitrate reductase by cytokinin and ethylene in grostemma githago L. embryos. Planta, 1986, 169: 589~593.
    129. Schrader, L. E., D omaka,D., Jung, P. E Jr. an L. A.Peterson Uptake and assimilation of ammonium-N and Nitrate-N and their influence on the growth of corn(Zea mays L.).Agron. J., 1997,64:690~695
    130. Shear, CB. Calcium-related disorder of fruits and vegetables. Hortscience 1975,10:361~365
    131. Theodore K R, Norman T. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant physiol. 1994,105:1153~1166
    132. Ullrich WR, Lazarova J, Ullrich CL, Witt FG, Aparicio PJ. Nitrate uptake and extracellular alkalinization by the green alga Hydrodictyon reticulum in blue and red light. J Exp Bot. 1998,(49): 1157~1162
    133. Vaast-P. Effects of solution PH, temperature, nitrate/ammonium rations and inhibitors on ammonium and nitrate uptake by Arabic coffee in short-term solution culture, J. Plant. Nutr., 1998, 21(7): 1551~1564
    134. Van der Boon J, Steenhuizen J W, Steingrover E G. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH_4~+/NO_3~-ratio and temperature of the recirculating nutrient solution. J. Horti. Sci. 1992,65:309~321
    135. Vezina F, Trude MJ, Gosselin A. Influence of various supplemental lighting treatments on the productivity and physiology of greenhouse tomato, Can. J. Plant Sci., 1991,71:923~932
    136. Weissman, G. S. Effect of ammonium and nitrate nutrition on protein level and exuade composition. Plant Physiol.,1964, 39: 947~952
    137. Wheeler E F, Albright L D, Spansmick R M, et al. Nitrate uptake kinetics in lettuce as influenced by light and nitrate nutrition. Transactions of the ASAE, 1998,41(3):859~867
    138. Wright G C et al. Gas exchange and chlorophyll content of 'Tifblue' rabbiteye and 'Sharpblue' southern highbush blueberry exposed to salinity and supplemental calcium. J Amer Soc Hort Sci. 1993,118,456~463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700