用户名: 密码: 验证码:
东亚飞蝗生境的遥感分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东亚飞蝗是引发我国蝗灾的最常见蝗虫。我国史籍中记载的800多次蝗灾,主要是指东亚飞蝗所引起的蝗灾。近年来,由于气候变化和人类活动等原因,这类蝗灾在我国有不断加重之趋势。
     及时、有效地防治蝗灾的关键,是对蝗灾作出监测;而现代遥感技术因其具有大面积快速、多时相等优点,因此在蝗灾的监测中可发挥特别的作用。
     蝗虫的发生与成灾与其存在的生境有十分密切的关系。因此,对蝗虫生境进行监测便成为遥感技术用于蝗灾监测的重要内容;而基于遥感影像的生境的计算机分类是蝗灾遥感监测的一项重要基础性工作。
     本文以渤海湾沿岸的河北省黄骅地区为研究区,进行东亚飞蝗生境的遥感分类研究。首先,对东亚飞蝗生境的含义进行了探讨。其次,结合黄骅地区的实际情况和所采用卫星影像特征,确定了东亚飞蝗生境分类的原则,并以此原则建立了黄骅地区东亚飞蝗的生境分类系统。然后,分别利用包括2003年8月14日和2004年5月28日的Landsat-5 TM图像,以及2003年10月16日的ASTER图像,采用最大似然法和基于知识的分层分类法,对黄骅地区的东亚飞蝗生境进行了不同组合的分类研究,并经过分析和比较,找出了最适合研究区东亚飞蝗生境分类的组合方案。
     通过本文研究,可得到以下结论:
     1) 正确地使用基于知识的分层分类法,能在很大程度上提高东亚飞蝗生境的分类精度。最大似然法也是一种很好的生境分类方法,但在分类中应注意训练样本的选取和纯化。
     2) 辅以空间信息的遥感影像生境分类,可使分类精度有所提高。
     3) 充分利用多时相遥感信息,可在很大程度上提高生境分类的精度。研究表明:分别将2003年8月14日和2004年5月28日的TM影像的5、4、3波段进行重组,其最大似然法分类的总精度可达到88.8095%,Kappa系数达0.8462;而增加了空间信息后的分类总精度可达89.3188%,Kappa系数达0.8534。
     4) ASTER影像的利用使生境分类精度有进一步的提高。结果表明,对2003年8月14日TM影像和2003年10月16日的ASTER影像的融合图像进行基于知识的分层分类,分类总精度可达90.9739%,Kappa系数达0.8738。此分类精度可基本满足黄骅地区东亚飞蝗生境遥感分类与制图的目的。
Oriental migratory locust (Locusta migratoria manilensis Meyen) is the kind of locust which has very often brought the harmful effects to many regions in China. More than 800 locust plagues have been recorded in Chinese historical documents, in which most of the plagues were caused by oriental migratory locust. In recent years, a tendency of more and more serious locust plague has emerged due to the climatic change and human activities.The key of timely and efficiently control of locust plague is conducting the monitoring of the plague. Remote sensing as the modern technology and with the advantages such as large-area and multi-temporal monitoring has a particular role in locust plague monitoring.There are close relationships between locust occurrence and outbreak and their habitas. Therefore, the monitoring of locust habitats has became a very important task in the application of remote sensing in locust plague monitoring, and habitat classification based on remotely sensed imagery has became an important foundamental task.In this paper, Huanghua city near Bohai Bay in Hebei province was taken as the study area and the locust habitat classification based on the images was conducted. First, the meanings of habitat of oriental migratory locust were explored. Second, the priciples used for the classification were determined based on the practical conditions of the study area and the used remotely sensed images, and a habitat classification system was constructed according to the classification principles. Third, the diffent combinations of the habitat classification were tested, including using the images of Landsat-5 received on August 14, 2003 and May 28 of 2004, and ASTER received at October 16 of 2003, and using the different classification methods including the maximum likehood classifier and knowleage-based layered classifier. Through the analysis and comparison of the combinations the mostly suitable one to the habitat classification in the study area was determined.Through this study the follow conclusions are drawn:1) Correctly using the knowleage-based layered classifier can much improve the classification accuracy of locust habitats. The maximum likelihood classifier is a rather good classification method and, however, much attention should be paid to selecting and purification of the training samples.2) With the aid of the spatial texture information on image, the accuracy of the habitat classification will be more or less improved.3) The accuracy of habitat classification will be particularly improved if multi-temporal remotely sensed image data are applied. The study indicated that: the overall accuracy and Kappa
    coefficient of the maximum likelihood are 88.8095% and 0.8462 respectively if combining of TM 5,4,3 bands of August 14, 2003 and May 28, 2004; and the overall accuracy and Kappa coefficient of the maximum likelihood will arise to 89.3188% and 0.8534 respectively if adding the spatial texture information on the images.4) Using ASTER image data can further improve the accuracy of the habitat classification. The study has shown that the overall accuracy and Kappa coefficient of the classification is 90.9739% and 0.8738 respectively if using the fused images of TM data received on August 14, 2003 and the ASTER data on October 16, 2003, and using the knowledge-based layered classification. This accuracy can basically meet the demands of the classification and mapping of the habitats for oriental migratory locust in the study area.
引文
[1] Bryceson K P, The use of Landsat MSS data to determine the distribution of locust eggbeds in the Riverina region of New South Wales, Australia. Int. J. Remote Sensing, 1989, 10: 1749~1762
    [2] Congalton R. G, 1991, A Review of Assessing the Accuracy of Classification of Remotely Sensed Data, Remote Sens. Environ., 37: 35~46
    [3] Gong P. & P. Howarth, 1992, Frequency-based Contextual Classifications and Gray-level Vector Reduction for Land-use Identification, Phote.Engin.and Remote Sens., 58(4): 423~437
    [4] Haralick R, Statistical and Structral Approachest to Texture[J], Proceedings of the IEEE, 1979, 67(5): 786~804
    [5] Hiekema J U, Application of Landsat data in desert locust survey and control. AGP/LCC/77/11 [R]. FAO, Rome, Italy, 1977
    [6] Hielkema J U, Remote sensing techniques and methodologies for monitoring ecological conditions for desert locust population development, FAO/USA ID Final Report [R]. FAO, Rome, Italy, 1980
    [7] Hielkema J U, Desert locust habitat monitoring with satellite remote sensing for an old problem, ITC Joumal, 1981, 4:387~417
    [8] Hielkema J U, etal, Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int J. Remote sensing, 1986, 7(11): 1609~1622
    [9] http://icgr.caas.net.cn/disease/04—杂粮/0634-0635%20东亚飞蝗.htm
    [10] http://libsrv.ylsh.chc.edu.tw/cpedia/Content.asp?ID=14083
    [11] http://www.pbzx.com:81/czpdx/jxzyc/sw/1/21/rj/01/kzz15.htm
    [12] http://www.xminfo.net.cn/xmkj/20024/20020419.htm (蝗害之年识蝗虫)
    [13] http://libsrv.ylsh.chc.edu.tw/cpedia/Content.asp?ID=14083
    [14] http://www.pbzx.com:81/czpdx/jxzyc/sw/1/21/rj/01/kzz15.htm
    [15] http://cache.baidu.com/c.word=%C9%FA%3B%BE%B3&url=http%3A//ecology%2Ebnu%2Eedu%2Ecn/students/lectures/eco006%2Eppt&b=39&user=baidu
    [16] http://211.67.73.5/resource/cz/czsw/swts/zgdbk/6254_sr.htm
    [17] http://www.acca21.org.cn/para4-2.html
    [18] http://61.54.131.138:8010/resource/cz/czsw/swts/swxcd2/15218_sr.htm
    [19] http://www.eco-w.org/stkt4001.asp (生态世界)
    [20] J. A. Richards, Remote Sensing Digital Image Analysis, Springer-Verlag, Berlin, 1999, p. 240
    [21] McCulloch L, Hunter D M, Identification and monitoring of Australian plague locust habitats from Landsat. Remote Sensing of Environment, 1983, 13(1): 95~102
    [22] Pedgley D E, Testing feasibility of detecting locust breeding sites by satellite. Final Report to NASA on ERTS-1, Experiment, COPRLondon, 1973
    [23] Swain PH, Davis S M, 1978, Remote Sensing: The Quantitative Approach, McGraw-Hill International BookCompany,朱振福译,北京:科学出版社, 1984:84~116
    [24] Vermote E F. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview[J], IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35(3): 675~685
    [25] Vermote E F, Tanr'e D, Deuz'e J L, et al, Second simulation of the satellite signal in the solar spectrum: User manual, University of Maryland/Laboratoire d'Optique Atmospherique, 1994
    [26] Zhong Y, Optimisation of Building Detection in Statellite Images by Combining Multispectral Classification and Texture Filtering, ISPRS Journal of Photogrammetry & Remote Sensing, 1999, 54:50~60
    [27] 曹骥,从今年飞蝗发生情形讨论今后应采取的防治途径,农业科学通讯,1951,9:7~9
    [28] 曹骥,历代有关蝗灾记载之分析,中国农业研究,1950,1 (1):57~65
    [29] 曹燕等,分形分维在遥感图像纹理分析中的应用,遥感技术与应用,1997,12 (4):31~35
    [30] 陈永林,蝗虫和蝗灾,生物学通报,1991,11:9~12
    [31] 陈永林,中国的飞蝗研究及其治理的主要成就,昆虫知识,2000,37 (1):50~58
    [32] 丁岩钦,李典谟等,东亚飞蝗分布型的研究及其应用,昆虫学报,1978,21 (3),243~259
    [33] 方红亮,地学应用中的遥感图像处理若干问题的分析,地理研究,1997,16 (2):97~103
    [34] 韩秀珍,马建文,罗敬宁等,遥感与GIS在东亚飞蝗灾害研究中的应用,地理研究,2003,22 (2):253~260
    [35] 韩秀珍,马建文,罗敬宁,张跃进,汤金仪,遥感与GIS在东亚飞蝗灾害研究中的应用,地理研究,2003,22(2):253~261
    [36] 韩秀珍,东亚飞蝗灾害的遥感监测机理与方法研究,博士学位论文,2003.6
    [37] 黄桂兰,郑肇葆,杨敏,一种基于共生矩阵法的影像纹理分类方法,测绘通报,1996(3),6~8
    [38] 黄心华,尤端淑等,高温低湿对东亚飞蝗蝗卵孵化的影响,植物保护学报,1965,4(2):119~132
    [39] 蒋建军,倪绍祥,韦玉春,GIS辅助下的环青海湖地区草地蝗虫生境分类研究,遥感学报,2002,6(5):387~342
    [40] 孔海江,陆维松,吕国强,王小丹,王纪军,干旱前期温度偏高对河南省东亚飞蝗发生的影响,南京气象学院学报,2003,26 (4):516~524
    [41] 李德仁,航天技术在测绘、遥感和地理信息系统中的应用,地球科学进展,1995 (5)
    [42] 李金枝,田方文,东亚飞蝗生育气象条件及发生度预报,山东气象,1998 (3):24~27
    [43] 李天杰,郑应顺等,土壤地理学(第二版),北京:高等教育出版社,1983:21~25
    [44] 栗振华,李崴,李秀文,李淑文,天津市东亚飞蝗发生防治情况及今后防治对策
    [45] 刘建平,赵英时,高光谱遥感数据解译的最佳波段选择方法研究,中国科学院研究生院学报,1999,16 (2):153~161
    [46] 楼亦槐,沿淮蝗区水涝与飞蝗发生关系的初步调查及其在防治措施上的探讨,昆虫学报,1959,9 (2):101~115
    [47] 吕恒,太湖水质多尺度遥感定量监测研究,博士学位论文,2004,6,66~68
    [48] 马骏超,江苏省清代旱蝗灾关系之推论,昆虫与植病,1936,4918:362~373
    [49] 马建文,韩秀珍,哈斯巴干等,基于东亚飞蝗生育周期的遥感蝗灾监测新模式,遥感学报,2004,8 (4):370~377
    [50] 马瑞金,张继贤,洪钢,用于影像几何纠正的图形图像控制点[J],测绘科学,1999,2:21~24
    [51] 马世骏,我国的大害虫-飞蝗,昆虫知识,1955,1 (3):133~139
    [52] 马世骏,根除飞蝗灾害,科学通报,1956,2:52~56
    [53] 马世骏,东亚飞蝗在中国的发生动态,昆虫学报,1958,8 (1):1~40
    [54] 马世骏,改造东亚飞蝗发生地,中国植物保护科学,北京:科学出版社,1961:424~436
    [55] 马世俊,中国东亚飞蝗蝗区的研究,北京:科学出版社,1965:29~30
    [56] 马世骏,洪泽湖及微山湖地区蝗虫研究工作概况介绍,科学通报,1954 (3):22~28
    [57] 梅安新等,遥感导论,北京:高等教育出版社,2001,156
    [58] 倪绍祥,蒋建军,王杰臣,遥感与GIS在蝗虫灾害防治研究中的应用进展,地球科学进展,2000年2月第15卷第1期:97~100
    [59] 倪绍祥等,环青海湖地区草地生境的蝗虫潜在发生可能性评价,生态学报,2002,22(3):285~290
    [60] 彭望禄,遥感数据的计算机处理与地理信息系统,北京师范大学出版社(北京),1991: 42~190
    [61] 钦俊德,蝗卵的研究Ⅲ 东亚飞蝗的失水和耐干能力,昆虫学报,1958,8 (3):207~225
    [62] 钦俊德,郭郛等,蝗卵的研究Ⅱ 蝗卵在孵育时的变化及其意义,昆虫学报,1956,6 (1):37~60
    [63] 钦俊德,郭郛等,蝗卵的研究Ⅳ 浸水对于蝗卵胚胎发育和死亡的影响,昆虫学报,1959,9 (4):287~305
    [64] 钦俊德,翟启慧等,蝗卵的研究Ⅰ 东亚飞蝗蝗卵孵育期中胚胎形态变化的观察及野外蝗卵胚胎发育期的调查,昆虫学报,1954,4 (4):383~398
    [65] 钱乐祥等,遥感数字影像处理与地理特征提取,科学出版社(北京),2003,12:225
    [66] 邱式邦,郭守桂等,对于侦查蝗虫方法的建议,农业科学通讯,1952,9:29~31
    [67] 石瑞香,东亚飞蝗生境监测的理论、方法与应用研究——以白洋淀蝗区为例,博士学位论文 2003.6
    [68] 王杰臣,倪绍祥,遥感与GIS在蝗虫监测和预报中的应用前景,测绘学院学报,2001,18 (4):275~279
    [69] 王正军,张爱兵,李典谟,遥感技术在昆虫生态学中的应用途径与进展,昆虫知识,2003,40 (2):97~100
    [70] 吴亚,高温低湿对东亚飞蝗—龄蝻生长的影响及其实验方法,昆虫知识,1964,8 (1):30~32
    [71] 许妙忠,余志惠,高分辨率卫星影像中阴影的自动提取与处理,测绘信息与工程,2003,28 (1):20~22
    [72] 颜梅春,张友静,鲍艳松,基于灰度共生矩阵法的IKNOS影像中竹林信息提取,遥感信息,2004,2:31~34
    [73] 杨存建,周成虎,基于知识的遥感图像分类方法探讨,地理学与国土研究,2001,17 (1):72~77
    [74] 尤端淑,马世骏,东亚飞蝗产卵及蝗卵孵化与土壤含盐量的关系,植物保护学报,1964,3 (4):333~344
    [75] 尤其儆等,东亚飞蝗的生活习性,昆虫学报,1958,8 (2):119~135
    [76] 曾志远,卫星遥感图像计算机分类与地学应用研究,科学出版社(北京),2004,9:6~8
    [77] 曾志远,卫星遥感图像计算机分类与地学应用研究,科学出版社(北京),2004,9:40~41
    [78] 曾志远,卫星遥感图像计算机分类与地学应用研究,科学出版社(北京),2004,9:154~157
    [79] 赵英时,遥感应用分析原理与方法,科学出版社(北京),2003,6:177
    [80] 赵英时,遥感应用分析原理与方法,科学出版社(北京),2003,6:194
    [81] 赵英时,遥感应用分析原理与方法,科学出版社(北京),2003,6:194~197
    [82] 赵英时,遥感应用分析原理与方法,科学出版社(北京),2003,6:203~208
    [83] 郑明国,ERDAS软件支持下的土地利用/土地覆盖分类研究——以郑州市土地利用/土地覆盖制图为例,2002,5,硕士论文,6
    [84] 朱天征,李金枝,黄河时间三角洲地区东亚飞蝗灾害及防御对策.灾害学,2002,17 (2):52~56,69
    [85] 朱述龙,张占睦,遥感图像获取与分析,科学出版社(北京),2000,153~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700