用户名: 密码: 验证码:
不同舱壁形式沥青船温度场和应力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青船作为一种高附加值运输船舶,科技含量高,制造难度大。沥青船运载的液货温度通常在120℃~180℃之间,高温液货不仅大幅度增加双壳结构的温度梯度,给船体构件带来显著的附加温度应力,甚至使局部构件产生屈服,从而危及结构的安全,故而需要对沥青船进行热应力分析。
     一般来说,在整体式沥青船货油舱内,只有舱壁结构与货物接触,又与船体其他构件相连接。因此,其温度梯度也最大,温度应力也最大。槽型舱壁是计及温度应力的沥青船结构分析的主要构件。槽型舱壁具有很好的释放温度应力的作用,但不同形式的舱壁受到的温度应力是否相同?槽型的改变对沥青船强度的影响有多大?会不会引起局部构件的屈服?这些是本论文主要研究的目的。
     随着计算机软硬件技术的发展,使得将船体的局部结构甚至整艘船划分为有限单元进行分析成为可能,船体结构强度分析从此有了革命性的突破。根据各构件的实际受力状况分别以杆、板、壳和梁等单元来模拟,真实地表达出各个构件的受力状况。通过有限元软件分析求解,可以求出各个构件的实际变形与应力结果。这种方法是目前最为精确,最为完善的方法。有限元分析方法在船体结构计算中应用已相当广泛,但是在船体热分析方面应用较少。本文将在前人研究的基础上,利用有限元软件计算不同槽型舱壁形式的沥青船的温度场和温度应力,从而研究计及温度应力的情况下,槽型舱壁槽型的改变对船体强度的影响程度。
     本论文首先对温度场和温度应力的基本理论,做了较深入和详细的阐述。如详细的介绍了温度场和温度应力的基本概念:温度场和温度应力的有限元解法;薄板弯曲的有限元计算。然后以一艘3500t级的沥青船为例,利用大型通用有限元分析软件MSC.Patran&MSC.Nastran建立了槽型舱壁的槽型方向不同、其它构件均相同的三个模型。对其进行温度场和温度应力计算,汇总计算结果,比较分析得出结论。取得了不同舱壁形式的沥青船温度场和温度应力的一般性结论,这对该类船体设计具有一定的参考价值。
As a high value-added transport ship, the science and technology including of asphalt ship is very high, and its manufacturing is difficult. The liquid that asphalt ship loads, which the temperature is usually between 120 to 180 degree Centigrade, high-temperature liquid cargo increase significantly the temperature gradient in double-shell structure, and brings significant additional thermal stress to the hull, or even led to component yield, endanger safety of the structure, therefore, it is very important for asphalt ships to carry out thermal stress analysis.
     Generally, only bulkhead structure contacts with the goods, and connects to the other components of the hull in the integral cargo tank of asphalt ship. So, the temperature gradient of this area is the largest, and the thermal stress is also the largest. Therefore, groove bulkhead is the main component which is taken the thermo stress analysis taking into account of the thermal stress of the asphalt ship. Groove bulkhead plays a very good role in the release of thermal stress. But is there any difference of different forms of the bulkhead by thermal stress? How much differences can be caused by these different forms? Would this give rise to local component of yield? This is the main aim in this study of this thesis.
     The development of computer hardware and software technology makes the FEM method of local structure or even the entire vessel to be possible. Since then, the strength analysis of the hull structure had a revolutionary breakthrough. According to various components of the actual situation of the force, were simulated into bar, plate, beam and shell, and other units, the real expression of the various components of the situation by force. Due to the analysis of finite element software, all components of the actual results of the stress and deformation can be obtained. It is the most accurate and comprehensive approach. Finite element method in the calculation of the hull structure has a wide range of applications, but real in the analysis of thermal stress of the ships. This article will be on the basis of previous studies, takes the use of finite element software to analysis the different forms of corrugated bulkhead of the asphalt ship. With this kind of method, the influences of groove bulkhead with temperature and thermal stress will be obvious.
     First of all, a more in-depth and detailed research in this paper have done based on the basic theory about the temperature field and thermal stress. For example, it describes the details of basic concept of the temperature field and thermal stress; the finite element method of the temperature field and thermal stress; and also the finite element method of bending sheet. And then take a 3500t asphalt-class ship as an example. Due to the large-scale finite element analysis software MSC.Patran & MSC.Nastran, three models with the bulkhead of the groove is in different directions were established, and the other components are the same. Then calculate the temperature field and thermal stress, gather together the three models' results, compare analysis conclusions. The general conclusion about bulkheads made of different forms of asphalt temperature and the ship's thermal stress is obtained. It has a certain reference value in designing of this category.
引文
[1]凌逸群.中国道路沥青市场现状及发展.石油沥青.2004.18(1):1-5
    [2]陈岚.沥青运输船的设计.长江船舶设计院.1999.(5):8-12
    [3]赵彩凤.独立液货舱型式沥青运输船设计特点.船海工程,2006.(3):26-28
    [4]滕晓青,顾永宁.双壳型船体结构稳态温度场和温度应力.中国造船.2000.41(2):53-65
    [5]滕晓青,顾永宁,单壳型船体结构稳态温度场和温度应力.中国造船.2003.7(2):51-60
    [6]Sole G H.Nonlinear thermal stresses in ship structures.Proceedings of the 2nd international Symposium on Practical Design in Shipbuilding,1983.381-388
    [7]Meriam J L.Thermal stresses in the SS boulder victory.Jourmal of Ship Research,Oct,1958,2(3):145-455
    [8]张晓君.沥青船温度场及热应力分析:[硕士学位论文].华中科技大学.2006
    [9]黄旎.计及温度应力的船体结构直接计算:[硕士学位论文].武汉理工大学.2007
    [10]毛筱菲 陈超核 张少雄.大开口集装箱波浪载荷实用程序系统.水运科技情报.1996.(4):19-21
    [11]张少雄,杨永谦.薄壁梁型船舶结构的水弹性自由振动.武汉交通科技大学学报.1996.20(6):739-744
    [12]Elgaaly M,Seshadri A.Depicting the behavior of girders with corrugated webs up to failure using non-linear finite element analysis.Advances in Engineering Software.1998:195-208
    [13]HuTingyao,Shigemi,Toshiyuki.Design loads used for direct strength assessment of merchant ship structures.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE.2004.(3):397-408
    [14]Aulkner,D.Bulk carriers and tankers - structural safety and the environment.Naval Architect.1997:31-32
    [15]陈良,吴宛青.原油油船液货温度场的数值计算.大连海事大学学报 2002.28(2):33-36
    [16]邵红艳,竺润祥,任茶仙.机构温度场和温度应力的有限元分析.宁波大学学报.2003,16(1):57-60
    [17]盛振邦,杨尚荣,陈雪深.船舶静力学.北京:国防工业出版社.1984
    [18]Quasi-static load effects.Report of committee Ⅱ.1,The 10th ISSC.1988.198-200
    [19]Sole G H.Nonlinear thermal stresses in ship structures.In:Proceedings of the 2nd International Symposium on Practical Design in Shipbuilding,1983.381-388
    [20]Nobukawa H.Thermal Stress Analysis for Integrated Type Liquid Heated Cargo Carder,Transaction of the West-Japan Society of Naval Architects.1993.(13):32-38
    [21]Moatsos I,Das PK.Modeling the effect of extreme diurnal temperature changes on ship structures for the assessment of The Fourteenth International Offshore and Polar Engineering Conference.Toulon,France.2004(3):505-513
    [22]Anon.Bulk carriers.A critical look from the safety angle.Shipping World and Shipbuilder.2001.202:19-29
    [23]Shigemi,Toshiyuki,ZhuTingyao.Extensive study on the design loads used for strength assessment of tanker and bulk carder structures.Journal of Marine Science and Technology.2004.9:95-108
    [24]Jang,C.D.,Yoon,G.J.Optimum structural design of double hull bulk carriers in comparison with conventional single hull types.International.Journal.of.Vehicle.Design.2002.28:259-274
    [25]Hu,Y.,Zhang,A.,Sun,J.Analysis of the ultimate longitudinal strength of a bulk carrier by using a simplified method.Marine Structures.May/June,2001,14:311-330
    [26]Anon.Bulk carder safety - An ongoing problem.Shipping World and Shipbuilder.October,2003,204:28-29
    [27]杜忠仁.船体纵向构件的热应力计算与比较衡准.中国造船,1991(4):56-64
    [28]陈伯真,胡毓仁.船体温度分布及温度应力计算.上海交通大学学报 1995.29(3):33-41
    [29]张少雄 杨永谦.油船结构强度分析与研究.武汉交通科技大学学报.2000.24(1):29-34
    [30]张少雄 杨永谦.关于油船结构强度计算的几种方法.武汉造船.1999.(1):5-11
    [31]Corlett E C B.Thermal expansion effects in composite ship.Trans INA,1950,(92):376-398
    [32]Jasper N H.Temperature-induced stresses in beams and ships.ASNE Journal,Aug 1956,68(4):485-497
    [33]W.B.Shietal.Thomp son P A and L e H ire J C.Thermal st ress and hull st ressmonito ring.SNAM E Transact ions,1996.(104):61-79
    [34]Nobukawa H,etal.Therma stress analysis for integrated type liquid heated cargo carrier.T ransact ion of the West-Japan Society of Naval Architects,1993.(13):32-38
    [35]王利永.船舶结构强度全船有限元计算:[硕士学位论文].武汉理工大学.2006
    [36]Moshaiov A,Rlatorre.Temperature distribution during plate bending by torch flame heating.Journal of Ship Research.1985,29(1):201-207
    [37]刘玉君.水火弯极热弹塑性机理及模拟方法的研究:[博士学位论文].大连理工大学.1997
    [38]王洪刚.热弹性力学概论.清华大学出版社,1988
    [39]徐芝纶.弹性力学(第二版).高等教育出版社,2004
    [40]俞佐平,陆煜编.传热学(第三版).高等教育出版社,2004
    [41]何善育,王同生译 H.帕尔库斯著.非定常热应力.北京:科学出版社,1965
    [42]戴天民.微极连续统的耦合场理论再研究.应用数学和力学 2002.23(3):229-240
    [43]侯鹏飞,郭丽娟,骆伟.表面热力耦合均载作用下的简支圆板.浙江大学学报(工学版)2007,41(1):104-108
    [44]楼志文,童云生,闵行.瞬态温度场和热弹塑性场的有限元分析.西安交通大学学报,1981.(06) 59-63
    [45]林金木.瞬态温度场的新解法.湖南大学学报 1996.23(01):78-84
    [46]林金木.瞬态温度场的解及振荡.工程热物理学报 1996,(03):107-113
    [47]周校先.工程中的稳态温度场和热应力场问题的分析.华南理工大学学报(自然科学版),1995,23(04):87-92
    [48]孔详谦.热应力有限单元法分析.上海交通大学出版社,1999
    [49]朱伯芳.有限单元法原理与应用(第二版).水利电力出版社,1997
    [50]谈至明,姚祖康.非线性温度场下的混凝土路面温度应力,中国公路学报,1993.6(4)9-17
    [51]王勖成,劭敏.有限单元法基本原理和数值方法(第2版).清华大学出版社,1997
    [52]王勖成,唐勇进.一般壳体温度场的有限单元分析.清华大学学报,1989.29(5):98-104
    [53]姜晋庆,张驿.结构弹塑性有限元分析.宁航出版社,1990.
    [54]唐水进,王助成.Wilson 非协调元温度应力分析中的应用.力学与试验,1990.12(5):35-37
    [55]Surana K.S.and Philips R.K.Three dimensional Currel Shell Finite Element for Heat Conduction 1987.25:775-785
    [56]Noboru Kikuchi.Finite element method in mechianics.Cambridge University Press,1986.
    [57]CCS 《油船结构直接计算分析指南》(2003).北京:人民交通出版社.2003
    [58]CCS钢质海船入级规范(修改通报).北京:人民交通出版社.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700