用户名: 密码: 验证码:
大型双壳油轮破损后总纵极限承载能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
所有船舶在航行过程中都面临着碰撞和搁浅等海损事故的危险。船舶破损后,不仅会造成严重的经济损失,更会因燃料或液货泄漏对海洋环境造成无法估量的影响。为此,IMO于2001年做出强制性规定,分阶段淘汰单壳油轮,以避免燃料或液货在船舶破损后发生泄漏事故。但是,由于破损船体的总体强度和局部强度已大为削弱,在救援、拖航过程中船体仍然可能因强度不足而进一步造成内壳受损,发生泄漏甚至沉没。因此,在舰船科学中,研究破损对船体总纵极限承载能力的影响很有现实意义。
     评价双壳油轮总纵极限承载能力最重要的指标是总纵极限弯矩,目前,计算船体总纵极限承载能力的方法主要有四种,即解析公式法、非线性有限元法、理想化结构单元法和Smith简化方法。其中Smith简化方法是一种原理相对简单且计算效率高的数值方法。
     本文基于Smith简化方法设计并计算了破口在各种位置、大小、形状条件下105000t双壳油轮的总纵极限弯矩、中横剖面应力分布、中和轴位置等重要指标,并基于这些计算结果分析、归纳了一系列破口参数与船体总纵极限弯矩之间的对应关系及其变化规律,其中包括船底和舷侧破口位置变化对总纵极限弯矩的影响,船底和舷侧破口大小变化对总纵极限弯矩的影响,船底和舷侧破口形状变化对总纵极限弯矩的影响等。
all ships all face with the damage of colliding and grounding during the transportation. After Ship damaged, it will not only cause serious economic losses, but also caused incalculable effects because the liquid cargo or fuel leak to the marine environment. Therefore, IMO made a mandatory requirement for phasing out of single-hull oil tankers in 2001, to avoid fuel or liquid cargo leaking after ship damaged. However, because the hull overall intensity and the partial intensity have received great influence, The inner shell may damaged, and the oil tanker may submerged in the rescue. Therefore, in the ships science, It is necessary to research the relationship between the crevasse and limit bearing capacity.
     the most important index to appraise the limit bearing capacity of double shell oil tanker is longitudinal moment. Now, There are main four kinds of methods to calculate the longitudinal moment of ship hull, they are empirical formulas method, nonlinear finite element method, idealized structural unit method and simplified Smith method. Simplified Smith method is a relative simple and effective method for the calculation of longitudinal strength of ship hull. Simplified Smith method is a relative simple and effective method for the calculation of longitudinal strength of ship hull.
     based on the simplified Smith method, We design a 105000 tons double shell oil tanker and calculate its longitudinal limit moment, the cross-sectional distribution of stress and the location of neutral axis in many different cases which contain crevasse location, crevasse size, and crevasse shape. And on the base, we find and explain many important phenomena and rules.
引文
[1]顾文军.国际油运市场现状及发展趋势.世界海运,2006,29(1):8~10
    [2]刘昭青.IMO海环会第50次会议概要.交通环保,2004,25(1):54~55
    [3]敬草.油船和散货船共同结构规范剖析.交通建设与管理,2007,24(1):94~96
    [4] John W. On the strength of iron ships. Trans The Institution of Naval Architects,1874, 15: 74~93
    [5] Nielsen L P. Structural Capacity of the hull girder. Ph.D.Thesis, 1998,22:647~665
    [6] Caldwell J B. Ultimate Longitudinal strength. Trans RINA,1965, 107: 411~430
    [7] Smith C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull. In PRADS– International Symposium on Practical Design in Shipbuilding,1977: 73~79
    [8] Yao T , Nikolov P I. Progressive collapse analysis of a ship’s hull under longitudinal bending. Journal of The Society of Naval Architects of Japan, 1991, 170: 449~461
    [9] Paik J K,Mansour A E. A Simple Formulation for Predicting the Ultimate Strength of Ships. Jourrnal of Marine Science and Technology,1995,5:154~176
    [10]郭昌捷.受损船体极限强度分析与可靠性评估.中国造船,1998,(4):49~56
    [11]祁恩荣.船舶碰撞与搁浅研究综述.船舶力学,2001,5(4):67~80
    [12]张国栋,李朝晖.船体破损后外载荷与船体极限弯矩.中国造船1997,(3):28~33
    [13] Chen Y K. Ultimate strength of ship structures. Trans SNAME,1983,91:149~168
    [14] Ueda Y,Rashed M H. The idealized structural unit method and its application to deep girder structures .Computers and Structures,1984,18: 277~293
    [15] Kutt L M, Piaszczyk C M, Chen Y K. Evaluation of longitudinal ultimate strength of various ship hull configuration. Transaction, SNAME, 1985,93:33~55
    [16] Valsgaard S, Jorgensen L, Boe A A. Ultimate hull girder strength Margins and present class requirements. Proceeding of Marine Structural Inspection, Maintenance and Monitoring, 1991,(3) :36~40
    [17] Ueda Y, Rashed S M H, Paik J K . Plate and stiffened plate units of the idealized structural unit method-under in-plane loading. Journal Soc. Naval Arch. Of Japan ,1984, 156:336~375
    [18] Paik J K, Wang G, Bong J K. Ultimate limit state design of ship hulls. In :Presentation at the 2002 SNAME annual meeting. Boston:2002.97~103
    [19] Ueda Y, Rashed S M H, Paik J K . Plate and stiffened plate units of the idealized structural unit method-under in-plane loading. Journal Soc. Naval Arch. Of Japan ,1984, 156:336~375
    [20] Paik J K, Lee D H. Ultimate strength-based safety and reliability assessment of ship’s hull girder. Journal Soc. Naval Arch. Of Japan, 1990,168:397~409
    [21] Paik J K, Kim D H, Bong H S et al. Deterministic and probabilistic safety evaluation for a new double-hull tanker with transverseless system. Trans SNAME, 1992, 100: 173~198
    [22] Paik J K. Ultimate hull girder strength analysis using idealized structural unit method: a case study for double hull girder with transverseless system.PRADS 92,Elsevier, Newcastle upon Tyne, 1992, 2: 745~763
    [23] Bai Y, Bendiksen E,Terndrup Pedersen P. Collapse analysis of ship hulls. Marine Structures, 1993, 6: 485~507
    [24] Ueda Y, Yao T. The plastic node method: a new method of plastic analysis. Computer Methods for Application Mechanics in Engineering, 1982, 34:1004~1089
    [25] ALPS/ULSAP(version 2005.5). A computer program for progressive collapse analysis of ship hulls. Proteus engineering. Stevensville. MD21666,USA. 2005
    [26] ALPS/HULL(version 2005.5). A computer program for progressive collapse analysis of ship hulls. Proteus engineering. Stevensville. MD21666, USA. 2005
    [27] Rutherford S E, Caldwell J B. Ultimate longitudinal strength of ships: a case study. Trans.SNAME, 1990,98:212~216
    [28] Yao T. Analysis of ultimate longitudinal strength of a ship’s hull. Text Book of MiniSymposium on Buckling/Plastic Collapse and Fatigue Strength; State of the Art and Future Problems. The West-Japan Soc Naval Arch, 1993, 1:154~177
    [29] Yao T. Ultimate Hull Girder Strength. Technical Report of ISSC Technical CommitteeⅥ.2. 14th International Ship and Offshore Structures Congress, Nagasaki, Japan,2000,1: 1~70
    [30]唐万明.LNG运输船船体总纵极限承载能力研究: [硕士学位论文]。武汉:华中科技大学图书馆,2005.
    [31]秦进元.世界海运形式.世界海运,2003,26(2):24~25
    [32]顾家骏.近年世界油运市场的发展与趋势.世界海运,2002,25(1):7~10
    [33]张雨华.关于淘汰单壳油轮议题的综述.中国修船,2004,(2):25~27
    [34]金在律,邢金有,征云龙. 21世纪大型油轮结构形式的动向.船舶工程,1995,17(3):4~10
    [35] IACS. Commom Structural Rules for Double Hull Oil Tanker.2006.
    [36] Yao T. Ultimate longitudinal strength of ship hull girder historical review and state of the art. Proceedings of the IOPE,1998,5:9~38
    [37] Yao T,Nikolov P I. Investigation into longitudinal strength of ship hull historical review and state of the art.Trans of the WJSNA,1996,91: 221~252
    [38] Yao T, Fujikubo M. Influence of welding imperfections on buckling/ultimate strength of ship bottom plating subjected to combined biaxial thrust and lateral pressure. Thin-Walled Structure Research and Development,1998: 425~432
    [39] Fujikubo M, Yao T. Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Marine Structure,2002,12: 543~564
    [40] Juncher J.Ductile collapse.In: Proceedings of the 12th International Ship and Offshore Structures Congress.Technical CommitteeⅢ,1994. 299~388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700