用户名: 密码: 验证码:
考虑初始缺陷的中厚壁冷弯方矩管柱极限承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来冷弯型钢构件由于加工的方便性和经济性在工程中得到了广泛的应用。随着加工技术的进步,冷成型钢构件的壁厚也越来越大。
     壁厚大于6mm的中厚壁冷弯方矩形钢管柱以其惯性矩大、稳定承载力高等优点,在建筑钢结构中具有良好的应用前景。
     针对轴压钢构件的稳定极限承载力的计算,我国目前有两种相应的技术规范:《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。前者主要针对热轧型钢截面或焊接组合截面的构件,而后者仅适用于钢板厚度不大于6mm的冷弯型钢。这两种规范是否可以应用于中厚壁冷弯型钢构件的整体稳定性计算尚不得而知。因此,对壁厚大于6mm的中厚壁冷弯型钢构件性能的研究具有一定的理论意义和工程应用价值。
     残余应力的存在使得钢结构轴压构件中的某些部位提前进入了塑性状态,导致构件的屈曲承载力降低。初始几何缺陷及钢材冷作硬化对冷弯型钢轴压构件的稳定极限承载力也有较大的影响。
     上述三种因素统称为初始缺陷。针对厚度大于6mm的中厚壁冷弯型轴压钢构件,目前国内外相关的研究文献很少考虑这些缺陷对其整体稳定承载力的影响。
     本文在国内外相关研究工作的基础上,总结了在考虑初始缺陷影响的前提下轴心压杆稳定承载力的计算方法,并以武汉轧钢厂生产的四种不同截面的典型中厚壁冷弯方矩形管轴压构件为研究对象,提出了其残余应力的分布及大小,在测试结果的基础上总结了构件初始几何缺陷和材料硬化的分布规律和数值。采用ABAQUS有限元分析软件,在考虑初始几何缺陷、残余应力、冷弯强化效应的前提下,对厚度为8-9mm的中厚壁冷弯方矩管柱轴压极限承载力进行了的分析和计算,并与相应的极限承载力试验值进行了比较,两者符合较好,从而验证了有限元建模方法的正确性。在此基础上,对不同长度的中厚壁冷弯方矩形管轴压构件进行了一系列的有限元分析,总结了其柱子曲线,并与《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)的计算结果进行了比较,得到了一些有益的结论,为类似构件的进一步研究提供参考,并为规范的修订补充提供了依据。
Because of convenience of process and economical efficiency, cold -formed steel members are being applied more and more widely in recent years. The section thickness is becoming larger and larger with the advancement of technology.
     The cold-formed steel columns with medium wall square and rectangular hollow sections, whose thickness are larger than 6mm, have favorable application prospect in building steel structure for the great inertia and highly axial loading-bearing capacity.
     There are two current technical specifications in China for calculating the ultimate load carrying capacity of the axial compressive steel members, which are respectively named Code for Design of Steel Structures (GB50017-2003) and Technical Code of Cold-formed Thin-wall Steel Structures (GB50018-2002). The former code is mainly aim at hot rolled steel and welded members of composite sections, while the latter is just suitable for cold-formed thin wall steel which thickness is less than 6mm. It is still an unknown problem whether the two current codes are suitable for the overall stability calculation of cold-formed medium wall steel members. There will be some academic meanings and engineering value for the research of the axial compressive loading capacity of cold formed medium thickness wall steel members whose thickness is larger than 6mm.
     The residual stress will lead some local area in the section into plastic state in advance, resulting in the reducing of the buckling bearing capacity. The initial geometry imperfection and cold-forming harden also has great influence on the failure mode and ultimate bearing capacity of the axial compressive members.
     The three affecting factors above are called initial imperfections. For the axial compressive cold-formed medium-wall steel members, whose thickness is larger than 6mm, there are few research literatures considering the imperfections' influence on their ultimate bearing capacity.
     Base on the research at home and abroad, this paper summarizes the calculation method about the ultimate bearing capacity of the axial compressive members considering the influence of the initial imperfections. The cold-formed steel medium thickness wall columns with four different square and rectangular hollow sections, produced by Hankou Roll-forming Steel Plant, are taken as research object. The residual stresses' distribution and magnitude are proposed. The initial geometry imperfection's distribution and the material harden considering cold-formed effect are provided base on the measurement. Considering the effect of three kinds of imperfection, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of the cold-formed medium thick-wall hollow rectangle and square section columns, whose thickness is range from 8 to 9 mm. The finite element analysis model is proven to be effective by comparing the analysis result with the test data. A series of finite element analysis are carried on for cold-formed medium thickness wall hollow rectangle and square section columns of different length. Relative column curve are obtained and compared with the Chinese Design Code for of Steel Structures (GB50017-2003) and Technical Code of Cold-formed Thin-wall Steel Structures (GB50018-2002) . Some beneficial conclusions are presented to provide reference for the similar members's research and the revision of relative codes.
引文
[1]于炜文著.冷成型钢结构设计(原文第三版)(COLD-FORMED STEEL DESIGN)[美](董军,夏冰青译).中国水利水电出版社.2003.8:1-34
    [2]朱德元,马越峰.冷弯型钢在建筑钢结构中的应用[J].建筑施工,1996,18(4):24-25
    [3]何保康,李风,丁国良.冷弯型钢在房屋建筑中的应用与发展.焊管,2002.9,25(5):8-10
    [4]徐伟良,钱峥.我国建筑冷弯型钢的发展与应用.新型建筑材料,2005:69-71
    [5]唐永清,张绍庆.大型方形矩形空心型钢.上海建材,2001,(4):34-35
    [6]郁竑,陆志华.建筑用冷弯大规格厚壁方矩形钢管的成型工艺与性能.工程结构与设计,2005.2,25-27
    [7]Yu,W.W.,R.A.LaBoube,Activities of the center for Cold-Formed Steel Structures,Proceedings of the 11th Specialty Conference on Cold-Formed Steel Structures,University of Missouri-Rolla,1992:213-223
    [8]John T.DeWolf,Teoman peokoz,George Winter.Local And Overall Bucking of Cold -Formed Members,ASCE.1974,100
    [9]Braham,M.,Annales de 1' Institute Technique du B a timent et des Travaux publics,No.385,1980:35-44
    [10]Gardner,M.J.and Stamenkovic,A.,Local Buckling in Rectangular Steel Hollow Sections Composed of plates of Varying b/t Ratios,Instability and plastic CollaPse of Steel Structure S,Editor L.J.Morris,Granada,1980:597-606
    [11]Kato,B.,Local Buckling of Steel Circular Tubes in Plastic Region.International Colloquium on Stability of Structures under Static and Dynamic Loads,Washington DE,USA,1977:375-91
    [12]Kato,B.,Nishiyama,I.,Inelastic Local Buckling of Cold-Formed Circular Hollow Section and Square Hollow Section Members.Japan-US Seminar on Inelastic Instability of Steel Structures and Structural Elements,Tokyo,Japan,1981.
    [13]Kato,B.,Aoki,H.,Narihara,H.,Residual stresses in Square Steel Tubes Introduced by Cold—Forming and the Influence on Mechanical Properties",International Meeting on Safety Criterial in Design of Tubular Structures,Tokyo,1986
    [14]Kimura,M.and Kaneko,n.,Evaluation on Width—to—Thickness Ratio of Box Columns with Round Corners,International Metting on Safety Criteria In Design of Tubular Structures,Tokyo,1986
    [15]Czechowski, J. and Brodka, j. " Local buckling of RHS" , International Meeting on safety Criteria in Desugn of Tublar Strctures, Tokyo,1986
    [16]Rondal, J. & Maquoi, R., Stub-column strength of thin-walled square and rectangular hollow sections. Thin-Walled Structures, 1985:15—34
    [17]Tall, L. & Alpsten, G., On the Scatter in Yield Strength and Residual Stresses in Steel Members. IABSE International Symposium, London, UK, 1969
    [18]Y. Kurobane, K. Ogawa , K. Ochi. Recent Research Developments in the Design of Tubular Structures, J. Construct. Steel Research, 1989,13:169-188
    [19]Key, P. W. and Hancock G. J., A Theoretical Investigation of The Column Behaviour of Cold Formed Square Hollow Section. Thin-walled Strutures. 1993, 16: 31—64
    [20]Gregory J. Hancock , Xiao-Ling Zhao. Research Into the Strength of Cold-Formed Tubular Sections. J. Construct. Steel Research, 1992, 23 :55~72
    [21]PeterW. Key , Gregory J. Hancock, A Theoretical Investigation of the Column Behaviour of Cold-Formed Square Hollow Sections, Thin-Walled Structures, 1993, 16 : 31-64
    [22]Gregory J. Hancock, Thomas M. Murray, Duane S. Ellifritt, Cold-Formed Steel Structures to the AISI Specification, 2001, 189~220
    [23]X. L. Zhao, M. Mahendran. Recent Innovations in Cold-Formed Tubular Sections J. Construct. Steel Res. 1998 (46): 472~473
    [24]S. Kitipornchai, F. G. A. AI-Bermani, S. L. Chan, Geometric and material nonlinear analysis ofstructures comprising rectangular hollow sections, Eng. Struct. 1988, 10:13~23
    [25]Ben Young, M. ASCE. Experimental Investigation of Cold-Formed Steel Lipped Angle Concentrically Loaded Compression Members. JOURNAL OF STRUCTURAL ENGINEERING, 2005,1390-1396
    [26]Ben Young, Wibisono Hartono, M. ASCE, Compression Tests of Stainless Steel Tubular Members, JOURNAL OF STRUCTURAL ENGINEERING , 2002, 128(6):754-761
    [27]Ben Young, M. ASCE, and Yahua Liu, Experimental Investigation of Cold-Formed Stainless SteelColumns, Journal of Structural Engineering, 2003, 129: 169—176
    [28]Ehab Ellobody, Ben Young. Structural performance of cold-formed high strengt stainless steel columns, Journal of Constructional Steel Research ,2005, 61: 1631-1649
    [29]Cristopher D. Moen, Takeru Igusa, B. W. Schafer, Prediction of residual stresses and strains in cold-formed steel members, Thin-Walled Structures ,2008,46: 1274-1289
    [30]B.W.Schafer,Review:The Direct Strength Method of cold-formed steel member design,Journal of Constructional Steel Research,2008,64:766-778
    [31]Cristopher D.Moen,B.W.Schafer,Experiments on cold-formed steel columns with holes,Thin-Walled Structures,2008,46:1164-1182
    [32]B.W.Schafer,T.Pekoz,Computational modeling of cold-formed steel:characterizing geometric imperfections and residual stresses,Journal of Constructional Steel Research,1998,47:193-210
    [33]Erkki Niemi,Jussi Rinnevalli.Buckling Tests on Cold-formed Square Hollow Sections of Steel Fe 510,J.Construct.Steel Research,1990,16:221-230
    [34]Ehab Ellobody,Buckling analysis of high strength stainless steel stiffened and unstiffened slender hollow section columns,Journal of Constructional Steel Research,2007,63:145-155
    [35]李成玉,刘德富.电化学腐蚀法测试冷弯薄壁型钢的残余应力[J],三峡大学学报(自然科学版),2001,23(4):301-304
    [36]赵峰.考虑残余应力影响冷弯薄壁型钢轴心压杆整体稳定的计算方法.工业建筑[J],1994,24(5):50-55
    [37]王维维.残余应力对厚壁冷弯双槽钢柱整体稳定性的影响:[武汉大学硕士学位论文],湖北:武汉大学结构工程专业,2005
    [38]朱爱珠.冷弯厚壁型钢冷弯效应试验研究及冷弯残余应力场分析:[武汉大学硕士学位论文].湖北:武汉大学结构工程专业,2004
    [39]何保康,蒋路,姚行友等.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究.建筑结构学报,2006.6,27(3):10-17
    [40]何保康,蒋路,刘艳军等.高强冷弯薄壁型钢压杆试验及直接强度法计算分析.工业建筑,2008.38(8).73-77
    [41]王小平,林少书,钟国辉.切割对C形冷弯型钢短柱初始几何缺陷的影响.武汉理工大学学报.2005,(06):58-61
    [42]王小平,钟国辉,林少书.C形冷弯薄壁型钢切割短柱轴压试验.武汉理工大学学报.2005,(07):57-60
    [43]王小平,钟国辉,林少书.C形冷弯钢切割短柱轴压承载力有限元分析.武汉理工大学学报.2006,(07):71-74
    [44]高恒,中厚壁冷弯钢管柱轴压承载力试验研究与分析:[武汉理工大学硕士论文],湖北:武汉理工大学,2007
    [45]中华人民共和国国家标准.GB50018-2002.冷弯薄壁型钢结构技术规范.中国计划出版设.2002.12
    [46]陈骥.钢结构稳定理论与设计(第二版).科学出版社.1-72
    [47]Karren,K.W.Corner Properties of Cold-formed Steel Shapes.Jouranal of the Struetural Division,ASCE Proeeedings,1967(3):401-432
    [48]汪辉.考虑初始缺陷的中厚壁冷弯钢管柱极限承载力研究:[武汉理工大学硕士论文],湖北:武汉理工大学,2004
    [49]金昌城,郝屏桢,刘韶萍.冷弯型钢屈服强度的研究.低温建筑技术.1981(01):46-53
    [50]中华人民共和国国家标准.GB50017-2003.钢结构设计规范.中国计划出版社.2003.10
    [51]蒋刚,谭明华,王伟明等.残余应力测量方法的研究现状。机床与液压,2007.6,35(6):213-220
    [52]袁发荣.残余应力测试与计算.湖南大学出版社.1987.8,35-240
    [53]何肇基.金属力学性能实验.冶金工业出版社.1988.20-31
    [54]Weng,C.C.and pekoz T.,Residual Sterss in Cold—Steel Members,Journal of Structural Engineering.1988,116(4):1161-1165
    [55]赵峰.冷弯卷边角钢的残余应力对轴心压杆弯扭屈曲的影响.[武汉水利电力学院学位论文],湖北:武汉水利电力学院.1989
    [56]郭盛.冷弯残余应力分布及其影响下的轴压构件整体稳定性研究.[武汉大学硕士学位论文],2004
    [57]赵炳云.冷弯薄壁型钢残余应力测试方法及其影响下轴压构件稳定性研究.[武汉科技大学],2006
    [58]于雷.厚壁冷成型钢残余应力理论分析及其影响研究.[南京工业大学学位论文],南京:南京工业大学结构工程.2005
    [59]Yong Lin Pi,N.S.Trahair.Lateral buckling strengths of cold- formed rectangular hollow seetions.Thin- Walled Struetures.1995,22:71-95
    [60]K.S.Sivakumaran,Nabil Abdel- Rahman.A finite element analysis model for the behavior of cold- formed steel members.Thin-Walled Struetures 31(1998).305-324
    [61]D.Dubina & V.Ungureanu.Efffect of Imperfeetions on Numerical Simulation of Instability Behaviour of Cold- formed Steel Members.Thin--Walled Struetures 40(2002).239-262
    [62]庄茁.ABAOUS非线性有限元分析与实例.科学出版社.2005,17-384
    [63]康国政.大型有限元程序的原理、结构与使用.2004,92-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700