用户名: 密码: 验证码:
基于GA的一次泵变流量系统运行参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑能耗在社会总能耗中占有很大的比重,而空调能耗又是建筑能耗中的大户。目前大多数一次泵系统为定流量系统,运行时流经制冷机组的水流量不能跟随负荷的变化而改变,水泵始终按照设计流量全速运行。而空调系统在实际运行中,95%的时间内是处于部分负荷工况下的,因此水泵容量往往大于实际需要,空调系统的运行费用高居不下。因此降低空调水系统的输配电耗,对于降低空调系统的全年运行能耗具有重要意义。针对定流量系统设计及运行中常出现的问题,本文以一次泵变流量系统作为研究对象,将冷冻水系统和冷却水系统作为一个整体来研究。
     首先,对空调水系统采用一次泵变流量的可行性及节能性进行了分析,当冷冻水和冷却水流量在一定范围内变化时,机组的性能不会下降很多,是完全可行的,但冷却水变流量相对于冷冻水变流量对机组性能影响要更大一些。对比分析了制冷机组与水泵的能耗关系可知,水泵节能率随着负荷的降低而增加,水泵相对机组功率越大,节能性越好。同时阐述了一次泵变流量系统的设计要点、存在的问题及其解决措施,深入分析了用户侧和冷源侧的流量及温差变化不一致的原因,这是由表冷器和制冷机组的换热特性所决定的。本文提出采用干管压差旁通法来平衡用户侧和冷源侧的流量及温差不一致问题。
     其次,根据系统优化理论及优化步骤,结合一次泵变流量系统的工作原理,在满足舒适性和节能性的基础上建立了一次泵变流量水系统优化运行的数学模型,给出了模型的具体表达式、模型中各参数的辨识方法并进行了模型验证。选取冷冻水流量和冷却水流量作为优化控制变量,结合安全性等因素列出了约束条件。根据优化模型的特点,应用MATLAB软件通过编制基于GA的优化程序进行求解。利用本文所提出的优化方法可以确定一次泵变流量水系统优化运行的参数设定值,从而为空调系统在部分负荷下节能运行及提高空调系统的运行效率提供科学依据。
     最后,以某工程为例,利用本文所提出的优化运行控制策略的设计方法,将原有的空调水系统改造成一次泵变流量系统并进行优化计算,将改造前后的运行结果进行了对比分析,结果表明一次泵变流量系统虽使机组能耗有所增加,但是相对于水泵节约的能耗来说增加并不大,从而使系统性能COP_s比传统控制时增加,而且负荷率越低,增加越大。采用优化控制后,部分负荷下的大部分时间内冷冻水侧和冷却水侧的温差均能维持在5~6℃之间,最小温差也有3.5℃,空调系统保持在较大的温差状态下运行。在空调系统的实际运行中,对于每一个负荷率均存在着与之相应的最佳流量,只有让冷冻水和冷却水的流量处于最佳值,才能使系统性能COP_s达到最大。经变流量改造后,仅3个月水泵的节电率达到63.1%,水系统总能耗的节电率达到12.8%。当空调系统采用一次泵变流量设计方案时,应综合考虑水泵相对主机功率、主机变水量性能以及空调负荷特点等因素。
     本文以优化理论为基础,以空调水系统节能运行为目标,将GA引入到一次泵变流量系统的优化设计中,提出了一套适用于一次泵变流量系统优化运行的控制策略设计方法,对新建建筑和旧有建筑中空调系统的设计、节能改造及优化运行具有一定的参考和推广价值。
In the overall social energy structure,a large proportion of energy will be attributed to buildings,in which air conditioning facilities consume considerable energy.Up to now,most primary systems are designed with constant flowrate,which fails to adjust in accordance with the actual load,thus pumps always run with full power.Since systems are often run under part-load condition for approximate 95%of their operation time,the capacity of pumps always exceeds the actual requirements.High operation expenses have made air conditioning systems a heavy burden in building management.Therefore,enhancing the efficiency of water transport systems possesses great significance in reducing the energy consumption of air conditioning system.Seeing the problems of constant flow system during the design and operation stage,this research aims to offer pertinent insight into optimal operation of variable primary flow(VPF) systems,by incorporating the chilled and chilling water systems into a single model.
     Firstly,feasibility and efficiency of VPF are analyzed.It is shown that only minor decrease of the chiller's performance takes place if the chilled and chilling water change is restricted within certain limits.Comparably,the chilling water change induces greater fluctuation of COP than chilled water.The analysis of correlation of chillers and pumps shows an increasing energy saving rate along with the decreasing load.The larger ratio of pump power against chiller power,the more energy will be saved.At the meantime,design key points, problems and solutions of VPF are analyzed.In addition,the non-uniform change of water flow and temperature differences between the consumer side and cooling source side are analyzed, which is determined by the heat transfer characteristics of surface coolers and chillers. Therefore,the main pipe bypass approach is introduced to balance the foregoing non-uniformity.
     Then,based on optimization theory and operation principles of VPF,this research establishes the mathematical model of VPF optimal operation,aiming to ensure both comfort and energy saving requirements.Identification method of model expressions and related parameters is given and then validated.By selecting chilled and chilling water flow rate as control parameters,and listing constraints with security concerns,this research applies genetic algorithm to compile and solve optimization program,with MATLAB tool box.With the proposed optimization method,parameters in VPF can be properly ascertained,which contributes to improve the efficiency of air conditioning systems,especially under part-time load.
     Finally,a real case is investigated by employing the optimization approach into the transformation of VPF.Comparison of energy consumption of a project before and after optimization shows great amount of energy consumed by pumps can be saved in spite of minor energy increase by chillers.Therefore the system COP_s is greatly enhanced.The lower cooling load brings much less energy consumption and more efficiency.For most of the time,the water temperature difference both in the chilled and chilling side of optimized system is maintained at 5~6℃,with the lowest exceeding 3.5℃.A single load ratio will respond to a optimum flow rate, which ensures the maximum COP_s.After transformation,63.1%of total electricity consumption by pumps,or 12.8%by the whole water system are saved.In the design of VPF systems,special attention should be paid to power ratio between chiller and pump,chiller performance under variable water flow,as well as cooling load,et al.
     Targeted at efficient operation of air conditioning networks,based on optimization theory, this research incorporates the genetic algorithm into the design of VPF systems,and proposes a set of optimal control strategies,which are applicable to energy saving design,reconstruction, as well as operation management of air conditioning systems.
引文
[1]张国强,龚光彩,范运湘.能源、环境与空调制冷[J].制冷学报,2000,3:1-6.
    [2]潘金文,汪琼珍.变频控制技术在中央空调水系统中的应用[J].工程建设与设计,2003(1):23-25.
    [3]王厉.不同控制策略对空调系统运行和室内环境参数的影响分析与验证[D].湖南:湖南大学土木工程学院,2003.
    [4]Rishel J B.Twenty years'experience with variable speed pumps on hot and chilled waters systems[J].ASHRAE Transactions,1988,94(2):215-219.
    [5]孟彬彬.部分负荷下一次泵水系统变流量可行性分析[C].全国暖通空调制冷2002年学术年会论集,珠海,2002:695-698.
    [6]李震,肖勇全.固定流量系统改为变流量系统的探讨[J].建筑热能通风空调,2004,23(2):47-50.
    [7]George H,Redden.Erect of variable flow on centrifugal chiller performance[J].ASHRAE Transactions,1996,102(1):316-320.
    [8]刘毅,张良.空调变流量系统的分析与探讨[J].制冷空调与电力机械,2008,23(87):14-17.
    [9]曹琦,傅明星,谢明华.空调供水系统变频控制的节能[J].技术纵横,2007,22(1):31-32.
    [10]胡曙铃.一次泵系统技术分析及应用[J].流体机械,2002,30(4):34-37.
    [11]郭勤.空调水系统二次泵变频控制节能原理的浅谈[J].暖通空调技术,2008,(4):23-25.
    [12]孙一坚.空调水系统变流量节能控制[J].暖通空调,2001,31(6):5-7.
    [13]孟彬彬,朱颖心,林波荣.部分负荷下一次泵水系统变流量性能研究[J].暖通空调,2002,32(6):108-110.
    [14]李彬,肖勇全,李德英等.变流量空调水系统的节能探讨[J].暖通空调,2006,36(1):132-136.
    [15]张谋雄.冷水机组变流量的性能[J].暖通空调,2000,30(6):56-58.
    [16]徐菱虹.集中空调冷却水系统的节能运行[J].暖通空调,2000,30(3):82-84.
    [17]孙一坚.关于集中空调冷却水系统节能运行[J].暖通空调,2003,33(2):39.
    [18]李志生,张国强,刘建龙等.基于冷水量变化的冷水机组性能测试与故障诊断[J].暖通空调,2006,36(8):108-112.
    [19]房立存,钱兴华,江玮.螺杆式冷水机组能量的变频调节[J].暖通空调,2008,33(1):112-113.
    [20]孙一坚.空调水系统变流量节能控制(续1):水流量变化对空调系统运行的影响[J].暖通空调,2004,34(7):60-62.
    [21]胥海伦.单式泵变流量系统旁通流量的影响因素[J].制冷与空调,2002,(2):15-18.
    [22]伍小亭,芦岩.循环水泵变频调速运行实例研究[J].暖通空调,2006,36(8):25-32.
    [23]李苏泷.一次泵系统冷水变流量节能控制研究[J].暖通空调,2006,36(7):72-75.
    [24]柏晨,柏峻.空调冷冻水系统末端定压差法中控制带的研究[J].建筑热能通风空调,2005,24(3):36-39.
    [25]Zimmer H.Chiller control using on-line allocation for energy conservation[C].ISA Annual Conference Proceedings,No.522,1986:23-29.
    [26]Nelder J,Mead R.A simplex method for functional minimization[J].Computer Journal,1985,(7):32-39.
    [27]Chun C,Norden N.Computer optimization of refrigeration systems in a textile,plant:a case history[J].Automation,1989,18(6):45-55.
    [28]Enterline L,Sommer A,Kaya A.Chiller optimization by distributed control to save energy[J].ISA Transactions,2004,123(2),117-221.
    [29]Lau A,Beckman W.Development of computerized control strategies for a large chilled water plant[J].ASHRAE Transactions,1985,91(2):89-95.
    [30]MacArthur J.A novel predictive strategy for cost-optimal control in buildings[J].ASHRAE Transactions,1993,99(1),156-165.
    [31]Curtiss P S.Artificial neural networks for use in building systems control and energy management[D].Colorado:University of Colorado-Boulder,2002.
    [32]Joseph C,Lam.Regression analysis of high-rise fully air-conditioned office buildings[J].Energy and Buildings,1997,26:105-110.
    [33]Austin S B.Chilled water system optimization[J].ASHRAE Journal,1993,35(7):85-94.
    [34]Shengwei W.Online adaptive control for optimizing variable speed pumps of indirect water-cooled chilling systems[J].Applied Thermal Engineering,2000,(21):1083-1103.
    [35]晋欣桥,李晓峰.中央空调水系统控制的优化分析[J].系统仿真学报,2003,15(8):1113-1115.
    [36]晋欣桥,李晓峰.楼宇空调变水量冷媒水系统实时优化控制[J].上海交通大学学报,2003,37(7):1128-1132.
    [37]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社,2001.
    [38]李苏珑,朱孟标,张国强.水泵变频调速方案的计算机辅助论证[C].江苏省暖通空调制冷年会,南京,2003:109-111.
    [39]彦启森,徐邦裕.空气调节用制冷技术[M].北京:中国建筑工业出版社,1984.
    [40]刘毅,袁建新.空调变流量系统的分析与探讨[J].湖南暖通空调,2002,(1):11-14.
    [41]朱伟峰,江亿.一次泵冷冻水系统直接应用变频的模拟分析及工程应用[J].制冷与空调,2003,3(1):25-30.
    [42]Redden G.Effect of variable flow on centrifugal chiller performance[J].ASHRAE Transactions,1996(102):684-687.
    [43]施灵.冷水机组不对称设计的可行性分析[J].制冷与空调,2002,(25):49-50.
    [44]汪训昌.空调冷水系统的沿革与变流量一次泵水系统的实践[J].暖通空调,2006,36(7):32-40.
    [45]袁朝旭.包钢某厂空调系统节能潜力研究[D].西安:西安建筑科技大学,2003.
    [46]黄文厚,李娥飞,潘云钢.一次泵系统冷水机组变流量控制方案[J].暖通空调,2004,34(4):65-69.
    [47]江亿.用变速泵和变速风机代替调节用风阀水阀[J].暖通空调,1997(2):66-71.
    [48]胡曙铃.一次泵系统技术分析及应用[J].流体机械,2008,30(4):34-37.
    [49]孙一坚,潘尤贵.空调水系统变流量节能控制(续2):变频调速水泵的合理应用[J].暖通空调,2005,35(10):90-92.
    [50]王凡,徐玉党.中央空调水系统变流量分析及其改进[J].建筑热能通风空调,2006,25(1):49-52.
    [51]王寒栋.空调冷冻水泵变频控制方式分析与比较[J].制冷空调与电力机械,2004,(25):16-21.
    [52]陈玉远.中央空调冷源与水系统的研究[D].重庆:重庆大学,2006.
    [53]袁学信.以回水温度对热水供暖系统作供热调节[J].暖通空调,1991(1):15-16.
    [54]欧阳焱,刘光大.空调冷冻水一次泵变流量系统的节能与控制[J].建筑热能通风空调,2007,26(3):71-73.
    [55]邹建忠,袁敏,刘光大.空调冷水泵变频调速变流量系统特性分析[J].湖南暖通空调,2007(1):12-13.
    [56]丁云飞.空调冷冻水变主流系统运行能耗分析[J].节能,2007(1):9-11.
    [57]施俊良.调节阀的选择[M].北京:中国建筑工业出版社,1986.
    [58]Robert Petitjean等.水力管网全面平衡技术.郎四维,冯铁栓译[M].北京:中国建筑工业出版社,1991.
    [59]王厉.压差控制法用于变水量空调系统[J].中国给水排水,2007,35(3):66-68.
    [60]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社,2006.
    [61]郭科,陈聆.最优化方法及其应用[M].北京:高等教育出版社,2007.
    [62]清华大学DeST开发组.建筑环境系统模拟分析设计方法[M].北京:中国建筑工业出版社,2006.
    [63]Gordon J M,Kim C N,Hui T C.Thermodynamic modeling and a diagnostic case study[J].International Journal of Refrigeration,1995,18(4):253-257.
    [64]Shengwei W.Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies[J].Building and Environment,1998,33(1):1-20.
    [65]Stephan K,Abdelsalam M.Heat-transfer correlations for natural convection boiling[J].Internatinal Journal of Heat and Mass Transfer,1980,23(1):73-86.
    [66]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,2002.
    [67]狄洪发,李吉生,戴斌文.开式系统中变速泵的节能分析[J].暖通空调,2002,32(1):59-61.
    [68]王寒栋.空调冷冻水泵变频能耗特性的研究[J].节能,2003,(12):10-12.
    [69]Michel A,Bernard B.Pumping energy and variable frequency drives[J].ASHRAE Journal,1999,(9):37-40.
    [70]王昭俊.采暖循环水泵的性能回归曲线方程研究[J].哈尔滨建筑大学学报,2000,33(2):66-69.
    [71]罗新梅,周向阳,曾祖铭.水泵变流量运行性能分析[J].华东交通大学学报,2004,21(4):19-21.
    [72]孟华.集中空调水系统的仿真及上位机控制器的实时优化控制研究[D].上海:同济大学,2004.
    [73]于丹.空调冷冻水系统大温差设计的影响及能耗分析[D].哈尔滨:哈尔滨工业大学,2001.
    [74]郑阿奇.MATLAB实用教程[M].北京:电子工业出版社,2005.
    [75]韩九强.MATLAB高级语言及其在控制系统中的应用[M].西安:西安交通大学出版社,1997.
    [76]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700