用户名: 密码: 验证码:
江汉盆地东部中生代沉积物碎屑云母组成、锆石LA-ICPMS定年及其物源示踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江汉盆地夹持于江南造山带中段与东秦岭-大别造山带间,被认为是大别造
    山带中生代同造山期的直接产物。大陆碰撞造山带折返与剥露过程,会在周缘盆
    地内留下沉积记录,从而使这些盆地内沉积学的研究成为探索造山过程的有效途
    径。碎屑白云母是碎屑岩中常见的、来自源区的稳定成分,可以用来指示源区性
    质,多硅白云母是碰撞造山高压-超高压变质岩石的特征矿物,可以用于示踪山脉
    高压-超高压岩石的去顶暴露。盆地碎屑沉积物中的锆石不但分布广泛,而且稳定
    性极强,对盆地沉积地层锆石U-Pb年龄谱的测定是目前提取沉积物年龄信息的一
    种重要方法,结合区域地质特征及周缘岩体出露情况可以对盆地不同时期的沉积
    物源区进行示踪。我们通过对江汉盆地东部中生代沉积地层中碎屑白云母矿物成
    分及碎屑锆石LA-ICP MS定年的研究,取得了如下主要认识:
     (1)上三叠统该区地层砂岩中碎屑白云母多以低硅白云母(Si<3.2)为特征,暗
    示此时大别造山带高压-超高压岩石很可能没有出露地表。
     (2)自下侏罗统开始,砂岩中碎屑白云母中多硅白云母(Si>3.3)大量出现,中
    侏罗统砂岩多硅和低硅白云母发育,表明大别高压-超高压岩石在早侏罗世即已出
    露地表并经剥蚀搬运至盆地。
     (3)在早侏罗世期间高压-超高压岩石对江汉盆地及与大别毗邻的其他盆地有
    着重要的物源贡献;在中晚侏罗世江汉盆地沉积物中碎屑白云母中多硅白云母少
    见,而在下扬子沿江和合肥山前盆地多见,表明尽管大别高压-超高压岩石仍暴露
    地表,但其主要贡献于北麓的合肥盆地和东侧的下扬子沉积盆地,对江汉盆地的
    贡献相对较少。
     (4)晚三叠晚期到晚侏罗中期区内沉积物物源主要来自于华北陆块;除了晚三
    叠晚期沉积物中扬子陆块物源贡献相对明显以外,其他时代地层来自于扬子陆块
    的物源较少;在晚三叠晚期即已记录到与华北扬子俯冲碰撞或折返时间有关的年
    龄信息,但相对占较大比例的时期在晚侏罗中期,大别山大规模高压-超高压岩石
    出露地表接受去顶并暴露搬运至盆地沉积的时间在晚侏罗中期。
Jianghan Basin is located between Qinling-Dabie and Jiangnan Orogenic belt. It is considered production of collision orogen stage during Mesozoic time. Voluminous sedimentary materials were transited into the ambient basins and deposited there during the process of continent-continent collision and the return of orogen. These sedimentary rocks provide an important insight into the sedimentary mechanism and information on the oerogen. The detrital white mica, as a stable and common composition in clastic rocks, can give some information on their source. Phengite, as one of the most characteristic minerals in HP-UHP metamorphic rocks which is generated commonly in collisional orogen, may reveal an important information on the process that the HP-UHP metamorphic rocks returned to the surface in the orogen. Furthermore, the detrital zircon is not only the important component of clastic sediment but distributes widely in various clastic rocks, whose U-Pb dating can provide an important information on the age of sedimentary rocks, accordingly, in combination with the natures of geo-tectonic and outcrop of the volcanism or the intrusion in the studied region, we may find out the information on the source of sediments deposited in different times. In this paper, we carried out the study on the compositions of white micas and the LA-ICPMS U-Pb dating of zircon from the Mesozoic clastic rocks in Eastern Jianghan Basin. The major conclusions are summarized as below:(1) The upper-Triassic white micas characterized by low Si (<3.2 Si atoms pfu ), indicates that the HP-UHP rocks in Dabie orogen improbably cropped out to the surface at that time.(2) Since the early Jurassic, the majority of phengites (Si>3.3 atoms pfu) of clastic whit micas started to occur in the sandstone. To the Middle Jurassic, both low-Si and high-Si white micas occurred abundantly in the clastic rocks. Such features suggested that the high-pressure and ultrahigh-pressure rocks of the Dabie orogenic belt were not exposed to the surface and carried down to deposit in the Jianghan basin until the early Jurassic.(3) The HP-UHP metamorphic rocks were the important materials contributed to the sediments in the Jianghan Basin and other ambient Basins during the early Jurassic.
    The majority of phengites occurring in the clastic sediments in the lower Yangtze regions and the Hefei Basin in the middle to late Jurassic, small amount in Jianghan Basin, imply that despite the HP-UHP metamorphic rocks were cropped out on the surface, the HP-UHP metamorphic rocks contributed mainly to sediments in the Hefei Basin in the north part of Dabie orogen and the lower Yangtze Basins in the eastern Dabie orogen, only small volume into the Jianghan Basin.(4) From the late Triassic to the middle upper Jurassic, the clastic rocks depositing in the Basin mainly derived from the North China Block. The relatively small amounts originned from the Yangtze Block. Though the information on the age of subducted collision or the return of HP-UHP metamorphic rocks to surface had been recorded in the late Triassic sediments, the HP-UHP metamorphic rocks had been voluminously cropped out on the surface and transmitted into the embient Basins to deposit during the middle late Jurassic.(5) The source of sedimentary materials deposited in the Jianghan basin had varied since the middle Jurassic. If the Yangtze Block and the North China Block had collided together to become a mountain during these times, some rocks from the basement of North China Block would occur in the Jianghan Basin. Otherwise, it could be the case that continent-continent collision occurred but did not become a mountain during those times.
引文
1. Ames L, Tilton G R and Zhou G. Timing of the Sino-Korean and Yangtze craton: U-Pb dating of Coesite- bearing eclogite. Geology, 1993, 21(4):339-342
    2. Ayers J C, Dunkle S, et al. Constrains on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-pressure metamorphism Belt. East-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 2002, 186:315-331
    3. Batt GE and Braun J. On the thermomechenical evolution of commpreessional orogens. Geophys. J. Met. Geol., 1997, 7:359-381
    4. Bruguier O, Lancelet JR and Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch(Central China) provenance and tectonic correlation. EPSL, 1997,152:217-231
    5. Carter A and Bristow CS. 2000. Detrital zircon geochronology: enchancing the quality of sedimentary source information through improved methodology and combined U-Pb and fission-track techniques, Basin Res., 12, 47-57
    6. Carter A and Moss SJ. Combined detrital zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution. Geology, 1999,27, 235-238
    7. Carter A. Present status and future avenues of source region discrimination and characterisation using fission track analysis. Sediment. Geol, 1999,124, 31-45
    8. Chen F, Guo J H, Jiang L L, et al. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie Ultrahigh-pressure collisional orogen, China evidence from zircon ages. Journal of Asian Earth Science. 2003.22:343-352
    9. Cong B. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu region of China. Beijing and Dordrecht: Science Press and Kluwer Acad. Publ, 1996, 224
    10. Cong B, Wang Q, Zhai M, et al. Ultra-high pressure metamorphic rocks in the Dabie-Sulu region, China: their formation and exhumation. The Island Arc, 1995, 3: 135-150
    11. Dickinson W R, Suczek C A. Plate tectonics and sandstone composition. AAPG Bull, 1979,63(12): 2164-2182
    12. Dickinson W R, Valloni R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Ame Bull, 1983, 94(2): 222-235
    13. Drewery SE, Cliff RA and Leeder MR. Provenance of Carboniferous sandstones from U-Pb dating of detital zircons. Nature, 1987, 325:50-53
    14. Gray MB and Zeitler PK. Comparison of clastic wedge provenance in the Appalachian foreland using U-Pb ages of detrital zircon.Tectonics, 1997,16:151-160
    15. Gallagher K, Brown R and Johson C. Fission track analysis and its application to geological problems. Annu. Rev. Earth Planet. Sci, 1998, 26, 519~572
    16. Galy A, France-Lanord C, Derry L A. The late Oligocene-Early Miocene Himalaya belt constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan. Tectonophysics, 1996, 260: 109-118
    17. George M, Reddy S, Harris N. Isotopic constrains on the cooling history of the Nanga Parbat-Haramosh Massif and Kohistan arc western Himalaya. Tectonics, 1995, 14(2):237-252
    18. Gilder SA, Leloup PH, Courtillot V et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to early Cenozoic paleomagnetic data. J. Geophys. Research, 1999,104 (B7): 15365-15390
    19. Grimmer J C, Ratschbacher L, Mc Williams M, et al. When did the ultrahigh-pressure rocks reach the surface ? A 207Pb/206Pb zircon,40Ar/39Ar white mica, Si-in white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology, 2003,197:87-110
    20. Gunther D,Jackson S E, Longerich H P. Laser ablation and arc/spark solid sample introdution into inductively coupled plasma mass spectrometers. Spectrochim. Acta. Part B,1999, 54:381-409
    21. Guo J, Chen F, Siebel W, et al. Crustal structure and tectonics in post UHP collisional environment of the Sulu orogen, eastern China: implications from SHRIMP zircon U-Pb dating on Jurassic granites. Terra Nova,2004
    22. Hacker BR, Ratschbacher LW, Dong S. What brought them up? Exhumation of he Dabie Shan ultrahigh-pressure rocks. Geology, 1995,23: 743-746
    23. Hacker BR, Ratschbacher L, Webb L. Exhumation of ultrahigh-pressure continental crust in east central China: late Triassic-early Jurassic tectonic unroofing. J. Geophys. Res. 2000,105(B6):13339-13364
    24. Hacker B R, Ratshbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 1998, 161:215-230
    25. Hacker B R and Wang Q. 40Ar/39Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 1995, 14(4):994-1006
    26. Hartman P. The Morphology of zircon and potassium dihydrogenphosphate in relation to the crystal structure..Acta Crystallogr ,1956, 9:721-729
    27. Henry PE, Deloule and Michard A. The erosion of the Alps: Nd isotopic and geochemical constrains on the sources of the pre-Alpine molasse sediments. EPSL, 1996,146(197):627-644
    28. Johnson C. Resolving denudational histories in orogenic belts with apatite fission track thermochronology and structural data:An example from southern Spain. Geology, 1997,25(7):623-625
    29. Kelley S and Bluck BJ. Detrital mineral ages from the Southern Uplands using 40Ar/39Ar laser probe. J. Geol. Soc.London, 1989, 146: 401-403
    30. Krol M A, Zeitler P K. Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology. Tectonics, 1996,15(2): 403-415
    31. Li S G, Jagoutz E, Lo C H, et al. Sm/Nd, Rb/Sr and 40Ar/39Ar isotopic systematics of the Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt central China: A retrospective view. International Geology Review, 1999, 41:1114-1124
    32. Li S, Jagoutz E, Chen Yizhi, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at shuanghe in the Dabie Mountain ,Central China. Geochimica et Cosmochimica Acta. 2000, 64(6): 1077-1093
    33. Li S, Xiao Y, Liou D, et al. Collison of the N China and Yangtse Block and formation of coesite-bearing eclogite; timing a process. Chemical Geology, 1993,109:89-111
    34. Li ZX. Collision between the North and South China blocks: a crustal detachment model for suturing in the region east of the Tanlu fault. Geolgy, 1994,22: 739-742
    35. Lerch MF, Xue F, Kroner A, Zhang G, Todt W. A middle Silurian-early Devonian magmatic arc in the Qingling mountains of Central China. J. Geol.,1995. 103:437-449
    36. Montgomery D R. Compressional uplift in the central California Coast Range. Geology, 1993,21:543-546
    37. Najman M R, Pringle M S. Laser40Ar/39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in india implications for early Himalayan evolution. Geology, 1997,6: 535-538
    38. Pavlenkova N L. Crustal and upper mantle structure and plate tectonics. V Beloussav, et al.(eds.). Critical aspects of the plate tectonic theory, 1990,1:73-86
    39. Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 1997, (5): 191-203
    40. Schmid J C, Franz L, Oberhansli R, et al . High-phengite, mineral chemistry and P-T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China. Chemical Geology, 2000, 35:185-207
    41. Schmid JC, Ratschbacher L, Hacker BR et al. How did the foreland react? Yangtze foreland fold-and-thrust belt deformation related to exhumation of the Dabie Shan ultrahigh-pressure continental crust (eastern China). Terra Nova, 1999, 11(6):266-272
    42. Song B, Nutman AP, Liu D, Wu J. 3800-2500 Ma crustal evolution in the Anshan area of Liaoning Orovince, northeastern China. Precamb. Res., 1996, 78:79-94
    43. Sorkhabi RB, Edmund S. Foland K A and Jain A K. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics, 1996,260:187-199
    44. Spiegel C, Kuhlemann J, Dunkl I, Frisch W, von Eynatten H and Balogh K. The erosion history of the Central Alps: evidence from zircon fission track data of the foreland basin sediments. Terra Nova, 2000,12(4):163-170
    45. Sun W, Williams I S, Li S. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China Blocks. J metamorphic Geol, 2002,20:873-886
    46. Vavra G. Systematic of internal zircon morphology in major Variscan granitoid types. Contrib Mineral Petrol, 1994,117: 331-344
    47. Von Eynatten H and Gaupp R. Provenance of Cretaceous synorogenic sandstones in the Alps:constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geoloy, 1999, 124:81-111
    48. Von Eynatten H, Schlunegger F, Gaupp R and Wijbrans JR. Exhumation of the Central Alps: evidence from 40Ar/39Ar laserprobe dating of detrital white micas from the Swiss Molasse Basin. Terra Nova, 1999,11(6):284-289
    49. Wang QQ and Cong BL. Exhumation of UHP Terranes: a case study from the Dabie Mountains, Eastern China. International Geology Review, 1999,41: 994-1004
    50. Willingshofer E, Andriessen P, Cloetingh S and Neubauser F. Detrital fission track t hermochronology of upper Cretaceous syn-orogenic sediments in the South Carpathians (Romania): intferences on the tectonic evolution of a collision al hinterland. Basin Research, 2001,13:379-395
    51. Xue F, Rowley R D, Tucker R D, et al. U-Pb zircon ages of granitoid rocks in the north Dabie complex, eastern Dabie Shan, China. Journal of Geology, 1997,105:744-753
    52. Zhang KJ. North and South China collision along the eastern and southern North Chian margins. Tectonophysics, 1997,270:145-156
    53. Zhao GC, Gawood PA, Wilde SA, Sun M, Lu L. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 2000,103:55-88
    54. Zhao GC, Wilde SA, Cawood PA & Sun M. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 2001, 107, 45-73
    55. Zheng Y F, Fu B, Li Y L, et al. Oxygen isotope composition of granulites from Dabieshan in eastern China and its implications for geodyamics of Yangtze plate subduction. Phys. Chem. Earth (A), 2001, 26(9-10): 673-684
    56. Zheng Y F, Wang Z R, Li S G, et al. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochim. Cosmochim. Acta, 2002, 66(4): 625-634
    57.陈道公,C.Isachsen,支臣霞等.安徽潜山片麻岩锆石UPb年龄.科学通报,2000,45(1):214-217
    58.陈道公,E.Dloule,程昊等.大别苏鲁变质岩锆石微区同位素特征初:探离子探针原位分析.科学通报,2003,48(16):1732-1739
    59.陈道公 Etienne DELOULE 夏群科,等.大别山双河超高压榴辉岩中变质锆石:离子探针和微区结构研究.岩石学报,2002,18(3):369-377
    60.陈道公,李彬贤,夏科群等.变质岩中锆石U—Pb计时问题评述—兼论大别造山带锆石定年.岩石学报,2001,17(01):129-138
    61.陈道公,倪涛.大别-苏鲁造山带高级变质岩中锆石微区U,Th和Pb化学组成特征统计.岩石学报,2004,20c:999-1006
    62.陈江峰,谢智,刘顺生,李学明,Foland K A.大别造山带冷却年龄~(40)Ar/~(39)Ar和裂变径迹年龄测定.中国科学(B辑),1995,25(10):1086-1092
    63.程裕淇,刘敦一,Williams I S.等.大别山碧溪岭深色榴辉岩和片麻状花岗岩锆石 SHRIMP分析-晋宁期高压-超高压变质作用的同位素年代学证据.地质学报,2000,74:193-205
    64.戴少武,刘少峰,程顺有.江汉及其邻区盆山耦合关系与油气.西北大学出版社,2000,P207
    65.戴少武,江荣沛.转换型构造及其在江汉盆地前白垩系油气勘探中的意义.地球学报,1997,18(1):18-24
    66.董树文,方景爽,李勇.下扬子中三叠世-中侏罗世沉积相与印支运动.地质论评,1994,40(2):111-119
    67.段金钟.江汉盆地白垩系石油地质与勘探前景.石油与天然气地质,1989,10(1):89-93
    68.付昭仁,李紫金,郑大瑜.湘赣边区NNE向走滑造山带构造发展样式.地学前缘,1999,6(4):263-272
    69.湖北省地质矿产局.湖北省区域地质志.北京:地质出版社,1990.
    70.关鸿,孙敏,徐平.阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学研究.岩石学报,1998,14(4):460-470
    71.侯振辉,李曙光.大别造山带超高压变质岩和镁铁质岩浆岩锆石U-Pb年代学的TIMS和SIMS法定年结果比较.岩石学报,2003,(3):490-496
    72.李德威.大陆构造与动力学研究的若干重要方向.地学前缘,1995,2(1-2):141-146
    73.李任伟,李忠,江茂生,孙枢,金福全,张雯华.合肥盆地碎屑石榴石组成及其对源区恢复和地层对比的意义.中国科学(D辑),2000,30(增刊):91-98
    74.李任伟,江茂生,李忠,孙枢,金福全,张雯华.大别山北麓侏罗系大理岩砾石的碳-氧同位素组成及地质意义.岩石学报,1999,15(4):623-629
    75.李任伟,孙枢,李忠,江茂生,金福全,李双应.高压-超高压岩石对合肥盆地侏罗系沉积的贡献.岩石学报,2002,18(4):526-530
    76.李任伟,桑海清,张任祜,储著银,李双应,金福全,江茂生.合肥盆地侏罗系沉积岩中高压-超高压变质岩物源年代学.科学通报,2003,48(5):480-485
    77.李任伟,万渝生,陈振宇,周剑雄,许荣华,李忠,江茂生.根据碎屑锆石SHRIMP U-Pb测年恢复早侏罗世大别造山带源区特征.中国科学(D辑),2004,34(4):320-328
    78.李双应,岳书全,王道轩.大别造山带超高压变质岩折返隆升的地层学证据—晚侏罗世榴辉岩砾石的启示.地质论评,2002,(4):345-352
    79.李曙光,黄方,李辉.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,2001,46(17):1487-1491
    80.李曙光,李惠民,陈移之,等.大别山-苏鲁地体超高压变质年代学-Ⅱ.锆石U-Pb同位素体系.中国科学(D)辑,1997,27(3):200-206
    81.李云安,傅昭仁.秦岭群的东延及意义.现代地质,1997,11(1):125-129
    82.李忠,李任伟,孙枢,孙雯华.大别山南麓中生代盆地充填记录对早山作用属性的反映.中国科学(D辑),2002,32(6):469-478
    83.李忠,李任伟,孙枢,孙雯华.大别地块北缘侏罗系花岗岩类砾石的Rb-Sr年代学特征.科学通报,2001,46(7):582-585
    84.李忠,李任伟,孙枢.大别山中生代构造演化:来自盆地充填记录的启示.地质通报,2002,21(8):547-553
    85.李忠,李任伟,孙枢,江茂生,张文华.合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性.岩石学报,1999,15(3):438-445
    86.刘墩一,简平.大别山双河硬玉石英岩的超高压变质和退变质事件—SHRIMP测年的证据.地质学报,2004,78(2):211-217
    87.刘和甫,夏义平,殷进垠等.走滑造山带与盆地耦合机制.地学前缘,1999,6(4):121-132
    88.刘和甫,汪泽成,熊宝贤,等.中国西部中、新生代前陆盆地与挤压造山带耦合分析.地学前缘,2000,7(3):55-72
    89.刘和甫.盆地-山岭耦合体系与地球动力学机制.地球科学,2001,26(6):581-596
    90.刘少峰,张国伟,张宗清,苏尚国.合肥盆地花岗岩砾石的同位素年代学示踪.科学通报,2001,46(9):748-753
    91.刘贻灿,李曙光,徐树桐,等.大别山北部榴辉岩和英云闪长质片麻岩锆石U-Pb年龄及多期变质增生.高校地质学报,2000,6(3):417-423
    92.刘早学,李雄伟,汪国虎等.随州盆地晚白垩世层序地层格架的初步研究-兼对“寺沟组”的再认识.湖北地矿,2000,14(3,4):23-29
    93.苗来成,罗镇宽,黄佳展,等.山东招掖金矿带内花岗岩类侵入体锆石SHRIMP研究及意义.中国科学(D)辑,1997,27(3):207-213
    94.宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评(增刊),2002,48:26-30
    95.宋忠宝,任有详,李智佩等.U-Pb同位素测年方法及其应用.西北地质,1998,19(1):68-71
    96.孙敏,关鸿.阜平杂岩年龄及其地质意义:兼论前寒武高级变质地体的定年问题.岩石学报,2001,17(1):145-156
    97.孙岩,舒良树,朱文斌等.中扬子地区碰撞造山变形作用的3个演化阶段.中 国科学(D辑),2001.31(6):455-463
    98.王道轩,金福全,谢宪德,刘因.合肥盆地三尖铺组~(40)mr/~(39)Ar同位素年代地层学研究.地层学杂志,2000,24(3):236-242
    99.王道轩,刘因,李双应,金福全.大别山高压变质岩折返至地表的时间下限:大别山北麓晚侏罗世砾岩中发现榴辉岩砾石.科学通报,2001,46(14):1216-1220
    100.王鸿祯,杨森楠,李思田.中国东部及邻区中新生代盆地发育及大陆边缘区的构造发展.地质学报,1983,3:213-212
    101.王贵明.江汉盆地基底构造遥感解译与研究.遥感与地质,1993,105:323-344
    102.王国灿,杨巍然.大别造山带中新生代隆升作用的时空格局.地球科学,1998,23(5):461-467
    103.王清晨,从柏林.大别山超高压变质岩的地球动力学意义.中国科学,D辑,1996,26(3):271-276
    104.汪相,Kienast J R.微粒暗色包体中锆石的形态演化及制约机制.中国科学(D).2000,30:180-187
    105.王岳军,范蔚茗,郭峰.北淮阳晚中生代火山岩定年及火山砾岩地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束.科学通报,2002,47(20):1528-1534
    106.王岳军,范蔚茗,林舸.盆地沉积物示踪源区山脉隆升剥露的几种方法.地质科技情报,1999,18(2):85-89
    108.吴福元,孙德有,李惠民,等.松辽盆地基底岩石的锆石U-Pb年龄.科学通报,2000,45(6):656-660
    109.吴应林等.中国南方三叠纪岩相古地理与成矿作用.北京:地质出版社,1994,45-53
    110.肖传桃,李继锋等.江汉盆地早三叠纪生态地层学及古地理特征.沉积学报,1997,15(1):85-91
    111.肖庆辉,李晓波,贾跃明.当代造山带研究中值得重视的若干前沿问题.地学前缘,1995,2(1-2):43-50
    112.谢智,陈江峰等.大别造山带北部竹河片麻岩的锆石U-Pb年龄及其地质意 义.岩石学报,2001,17(1):139-144
    113.徐政语.中生代以来江汉叠合盆地及邻区盆山耦合作用研究—兼论对盆地油气系统的约束[博士论文].长沙:中国科学院长沙大地所,2002,1-73
    114.闫义,林舸,陈卓.北票盆地侏罗纪砾岩沉积特征及对区域构造演化的指示.大地构造与成矿学,2001,25(4):361-367
    115.杨坤光,马昌前,许长海,杨巍然.北淮阳构造带与大别造山带的差异性隆升.中国科学(D辑),1999,29(2):97-103
    116.袁洪林,吴福元,高山.东北地区新生代侵入体的锆石激光探针U—Pb年龄测定与稀土元素成分分析.科学通报,2003,28(14):1511-1520
    117.张长厚,等.苏北-鲁东南高压、超高压变质带剥露过程中伸展构造作用.地质论评,1998,44(3):225-232
    118.张国伟,孟庆任,于在平,孙勇,周鼎武,郭安林.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(2):193-200
    119.张进红,琼彬,丁汝福.阿尔泰造山带康布铁堡组变质火山岩锆石特征和铀铅年龄.中国区域地质,2000,19(3):281-287
    120.张玉泉,等.青藏高原西部的抬升速率:叶城—狮泉河花岗岩~(40)Ar/~(39)Ar年龄的地质解释.岩石学报,1998,14(1):11-21
    121.郑永飞,陈福坤,龚冰,等.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据.科学通报,2003,48(2):110-119
    123.朱光,等.下扬子地区前陆变形构造格局及其动力学机制.中国区域地质.1999,18(1):73-79
    124.朱光,王道轩,等.大别高压-超高压变质岩剥露历史在合肥盆地的记录.高校地质学报,2004,10(4):594-605
    125.朱光,徐嘉炜,刘国生,等.下扬子地区沿江前陆盆地形成的构造控制.地质论评,1998.44(2):120-129
    126.左文超.论印支运动在湖北境内表现特点-兼论省内盖层褶皱形成主要时期.湖北地矿,2000,14(3,4):16-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700