用户名: 密码: 验证码:
铸铁材料在水环境(海水、淡水、盐水)中的腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类生活和生产建设都离不开自然水资源,对自然水资源的开发利用,诸如海洋石油钻探和采气装置、盐湖大型钾肥工厂、长江三峡工程的建设,这些都离不开大量的金属材料。在众多的金属材料中,铸铁材料由于其低廉的价格,优良的铸造性、机加工性能等而备受青睐。因此,研究铸铁材料在水环境中的腐蚀数据,掌握腐蚀规律及控制腐蚀的方法,对延长水环境中铸铁的使用寿命,保证铸铁构件的安全正常使用以及促进水资源的开发利用,都具有十分重要的现实意义。
     本课题是在前人研究的基础上继续研究铸铁材料在水环境(淡水、海水、盐水)中的腐蚀情况,主要采用失重法测量了铸铁材料在各种水环境中的腐蚀率,采用X射线分析(XRD)和扫描电镜(SEM)测量了铸铁材料在各种水环境中的腐蚀产物的组成和形貌。分别采用硬度、力学性能和pH值、电导率等分析手段测定了材料及腐蚀环境的性能和特点。较系统的分析和讨论了铸铁材料在海水、淡水、盐湖卤水及自制盐溶液中的腐蚀规律及特点。
     铸铁材料在中性的海水、长江淡水和盐湖卤水中的腐蚀以氧去极化的电化学腐蚀形式为主,腐蚀速度受氧的极限扩散电流影响。相同材料在不同环境中的腐蚀率差别的主要原因取决于介质中的氧含量、电导率及流速等。腐蚀产物主要为铁的氢氧化物及氧化物。低合金化对提高铸铁在静海中的均匀腐蚀无明显作用,反而会增加铸铁的点蚀。铸铁材料在海水中的腐蚀产物为γFeOOH、αFeOOH及Fe(OH)3。氧化膜较疏松,对铸铁的保护性差。在长江淡水中,灰口铸铁的平均腐蚀率最大,球墨铸铁的点蚀最严重。球铁在长江淡水中的腐蚀产物是由铁的氢氧化物、氧化物尖晶石结构及石墨碳组成,硬度较高,有利于减弱铸铁在流动介质中的腐蚀。铸铁在盐湖卤水中的腐蚀率小于在海水和淡水中的腐蚀率。球铁的腐蚀率最小,仅为0.023mm/a,球铁自身的组织特点是其获得良好耐蚀性的重要因素。极高的Cl-离子浓度未对铸铁材料造成点蚀。在浓度高于3%的盐溶液中,灰铸铁的腐蚀为典型的石墨化腐蚀,其腐蚀率随盐溶液浓度的升高而降低。随盐溶液浓度提高,溶液中溶氧量下降,溶液的电阻增大,腐蚀电流减小是使铸铁腐蚀率下降的主要原因。
It is well known that human life and production building are dependent on natural water resources. The development and utilization of natural water resources, such as offshore oil drilling and the construction of gas exploitation device, large potash fertilizer manufactory in salt lake and The Grand Three Gorges Project, which are dependent on metal materials. Among the metal materials, iron material has attracted much attention because of its low price, good casting and machining performance. So, study on the corrosion data of cast iron in the water environment, master of corrosive regularity and the methods of controlling corrosion are of great practical significance to extend the life of cast iron in water environment, guarantee the safe use of cast iron, promote the development and utilization of water resources.
     In this paper, the corrosion of cast iron in the water environment including seawater, freshwater, salt lake brine and salt solution are studied on the base of previous researches. Corrosion rates of cast iron immersed in seawater, freshwater, salt lake brine and salt solution are investigated by weight-loss method. The pattern and composition of corrosion products in the water environment are investigated by SEM and XRD respectively. The material performance and characteristics of water environment are investigated by pH, conductivity meter, hardness and tensile test respectively.
     Corrosive regularity and characteristics of cast iron in the seawater, freshwater, salt lake brine and salt solution are analyzed systematically. The corrosion form of cast iron in seawater, freshwater, salt lake brine and salt solution is mainly oxygen absorption corrosion. The corrosion rates are impacted on limit diffusion current of oxygen. The prime reasons that the difference of corrosion rates of the same material in different environment are the density of oxygen, electrical conductivity and flowing speed. The compositions of corrosion product are iron hydroxide and iron oxide. The effects of low alloying treatment on homogeneous corrosion properties of cast irons in seawater is not obvious. But the pitting corrosion properties of low alloyed cast irons is the most serious on the contrary. The compositions of corrosion product of cast irons in seawater are lepidocrocite (γFeOOH), goethite (αFeOOH) and Fe(OH)3. The oxide film is loose. So, its protection of the cast iron is poor. The average corrosion rate of gray cast iron is the highest and the pitting corrosion of spheroidal graphite iron is the most serious in freshwater of changjiang river. The compositions of corrosion products of spheroidal graphite iron are iron hydroxide, iron oxide with spinel structure and graphite (C). This film of corrosion products can reduce iron corrosion rate in the flowing water because of its high hardness. The corrosion rate of cast iron in salt lake brine is less than the rate in seawater and fresh water. The corrosion rate of spheroidal graphite iron is the smallest only 0.023mm/a. The main factor for good corrosion resistance of spheroidal graphite iron is its own organizational characteristic. The high chloride ion concentration does not reduce the pitting corrosion of cast iron. The corrosion rate on cast iron decreases with the increase of consistency of salt solution when the concentration above 3%. The cast iron has the typical“graphitization”phenomenon. The augment of concentration of salt solution reduces density of the presence of oxygen. But the increment of electric resistance in it will make the electrochemical corrosion current lower. Those are prime reasons that the cast iron corrosion rate decreases.
引文
[1]Shreir L L. Corrosion—Metal/Environment Reaction[M]. Newnes-Butterworths, London Boston, 1976.
    [2] NACE著.朱日彰,王光雍等译.腐蚀与防护技术基础[M].北京:冶金工业版社,1987.
    [3]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.
    [4]翁永基.材料腐蚀通论—腐蚀科学与工程基础[M].北京:石油工业出版社,2004.
    [5] Einar Bardal. Corrosion and Protection—Engineering Materials and Processes[M]. London: Springer-Verlag London Limited, 2004.
    [6]李志强.环球海水腐蚀性研究进展[J].全国环境腐蚀网站通讯,2002(274):6-8.
    [7]颜民,黄桂桥.中国水环境腐蚀试验站网工作回顾与展望[J].海洋科学,2005,29(7):73-76.
    [8]王光雍.我国材料环境腐蚀试验网站的建设与发展—“腐蚀网站”建设过程回顾[J].全国环境腐蚀网站通讯,1999(246):3-5.
    [9]刘大扬.继续发扬艰苦奋斗的“网站”精神为国家建设多作贡献[J].全国环境腐蚀网站通讯,1999(246):11-12.
    [10]赵明星.Fe-Al金属间化合物的制备及其耐海洋环境腐蚀性能的研究[D].青岛:中国海洋大学硕士学位论文,2007.
    [11]王凤英.铸铁材料在自然水环境中的腐蚀机理研究[D].太原:太原科技大学硕士学位论文,2004.
    [12] F.w.芬克,W.K.傅伊德著.冶金工业部钢铁研究院,包钢冶金研究所译.海洋环境中金属的腐蚀[M].北京:科学出版社,1976.
    [13]马士德,孙虎元,黄桂桥等.海洋污损生物对碳钢腐蚀的影响[J].中国腐蚀与防护学报,2000,20(3):177-182.
    [14]侯宝荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999.
    [15]赵力,战广深,赵有刚.碳钢在鸭绿江入海口海水中的腐蚀行为[J].全面腐蚀控制,2000,14(5):24-26.
    [16] C.T. Liu, J.K. Wu. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5% NaCl solution[J]. Corrosion Science, 2007, 49 (5) : 2198-2209.
    [17]陈惠玲,李晓娟,魏雨.pH值对碳钢在海洋环境腐蚀的影响[J].河北工业科技,2006,23(4):216-221.
    [18] M.Eashwar, G.Subramanian, P.Chandrasekaran. Mechanisms for Barnacle-Induced Crevice Corrosion in Stainless Steel[J]. Corrosion, 1992, 48 (7) : 608-612.
    [19]马士德,谢肖勃,黄修明等.藤壶附着对海水中金属腐蚀的影响[J].中国腐蚀与防护学报,1995,15(3):74-78.
    [20] R. Jeffrey, R.E. Melchers. Bacteriological influence in the development of iron sulphide species in marine immersion environments[J]. Corrosion Science, 2003, 45(4): 693-714.
    [21] Vedage H, Ramanarayanan T A, Mumford J D. Electrochemical growth of iron sulfide films in H2S-saturated chloride media[J]. Corrosion,1993, 49(2): 114-121.
    [22] Eugene Cloete T, Volker S, Bruzel. Practical aspects of biofouling control in industrial water systems[J]. International Biodeterioration and Biodegradation, 1992, 29 (3) : 299-341.
    [23] A. Rajasekar, S. Maruthamuthu, N. Muthukumar. Bacterial degradation of naphtha and its influence on corrosion[J]. Corrosion Science, 2005, 47 (1) : 257-271.
    [24] M.舒马赫著.李大超,杨荫等译.海水腐蚀手册[M].北京:国防工业出版社,1985.
    [25] R.Winston Revie主编.杨武等译.尤利格腐蚀手册(原著第二版)[M].北京:化学工业出版社,2005.
    [26]杜翠薇,赵妍妍,卢琳等.神经网络在海水腐蚀预测中的应用[J].装备环境工程,2007,4(3):85-87.
    [27]邓春龙,孙明先,李文军等.海洋环境中材料腐蚀数据采集处理网络系统的研究[J].装备环境工程,2006,3(3):58-62.
    [28] Pavlo Shevchuk, Bogdan Galapats, Victor Shevchuk. Mathematical modelling of ageing and lifetime prediction of lacquer-paint coatings in sea water[J]. International Journal of Engineering Science, 2000, 38 (17) : 1869-1894.
    [29]邓春龙,李文军,孙明先.BP神经网络在碳钢、低合金钢海水腐蚀中的应用[J].腐蚀科学与防护技术,2006,18(1):54-57.
    [30] Fong Yuan Ma ,Wei Hui Wang. Prediction of pitting corrosion behavior for stainless SUS 630 basedon grey system theory[J]. Materials Letters, 2007, 61(4): 998-1001.
    [31]杨晓明,陈明文,戴明安等.海水对金属腐蚀因素的分析及预测[J].北京科技大学学报,1999,21(2):186-188.
    [32]姜加虎,王苏民.长江流域水资源、灾害及水环境状况初步分析[J].第四纪研究,2004,24(5):512-517.
    [33]朱日彰等.金属腐蚀理论及应用[M].北京:冶金工业出版社,1989.
    [34]王光雍等.自然环境的腐蚀与防护大气·海水·土壤[M].北京:化学工业出版, 1997.
    [35]孙青武,邱春凤,张述瑞.对察尔汗盐湖资源开发利用的思考[J].青海科技,2003(6):16-18.
    [36]梁义田,杨雪琴,梁蓓等.高盐卤环境中金属防腐蚀问题探讨[J].铸造技术,2003,24(4):309-310.材
    [37]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003.
    [38]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001.
    [39]付圣华,古可成,胡德利等.在海水中形成自生保护膜的合金铸铁[J].铸造,1995 (2):29-32.
    [40] A. GISMELSEED, M. ELZAIN, A. YOUSIF. Identification of Corrosion Products Due to Seawater and Fresh Water[J]. Hyperfine Interactions, 2004, 156/157: 487– 492.
    [41]杨武,顾睿样,肖景光.金属的局部腐蚀[M].北京:化学工业出版社,1995.
    [42]张承忠.金属的腐蚀与保护[M].北京:冶金工业出版社,1985.
    [43]张文渊.淡水环境中水工钢闸门的腐蚀与防护[J].表面技术,2001,30(4):20-22.
    [44]桑连海,黄薇,廖志丹.长江流域城市污水处理现状与节水效应浅析[J].长江科学院院报,2007,24(4):23-25.
    [45] T.S. Raoa, T.N. Sairamb, B. Viswanathan. Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system[J]. Corrosion Science, 2000, 42 (8) : 1417-1431.
    [46]毛旭辉,吴成红,甘复兴等.多相流动淡水体系中碳钢的冲刷腐蚀行为[J].腐蚀科学与防护技术,2001,13(11):391-394.
    [47] Paul Linhardt. MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mn - oxides[J]. Electrochimica Acta, 2006, 51 (27): 6081-6084.
    [48]曹刚,高翠,甘复兴.碳钢在淡水环境中的腐蚀行为[J].装备环境工程,2006,3(1):46-51.
    [49]朱雅仙,朱锡昶,葛燕等.流动淡水中钢的腐蚀行为研究[J].水利水运工程学报,2002(2):7-11.
    [50]夏兰廷,韦华.石墨形态对铸铁静海腐蚀性能的影响[J].大原重型机械学院学报,2002(1):25-28.
    [51]夏兰廷,韦华.自然海水中低合金铸铁点蚀的化学-电化学溶解机理[J].机械工程学报,2002,38(9):140-144.
    [52]余红发,孙伟,屈武等.盐湖地区的环境条件与混凝土和钢筋混凝土结构的耐久性[J].工业建筑,2003,33(3):1-4.
    [53]冯哲圣,肖占文,杨邦朝.铝箔交流扩面腐蚀中SO42-缓蚀机理的研究[J].中国腐蚀与防护学报,2003,23(2):70-74.
    [54] Gan Yan, Li Ying, Li Haichao. Experimental study on the local corrosion of low alloy steels in 3.5% NaCl [J]. Corrosion Science, 2001, 43 (3) : 397-411.
    [55]苏克和,胡小玲.物理化学[M].西安:西北工业大学出版社,2004:233.
    [56]季德霖.铸铁的腐蚀破坏及控制[J].安徽科技,1997(4):43-45.
    [57]王荣峰,韦华,夏兰廷等.铸铁在海洋腐蚀环境下的防护措施[J].铸造设备研究,2001(5):25-27.
    [58]古可成,李青,李丰等.耐海水腐蚀低合金铸铁[J].现代铸铁,1998,71(3):36-39.
    [59]孙东杰,古可成,张广超等.耐海水腐蚀低合金球墨铸铁的初步研究[J].热加工工艺,2007,36(9):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700