用户名: 密码: 验证码:
毛细管电泳单细胞分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章,首先对毛细管电泳的基本原理进行了简单的介绍。然后对毛细管电泳应用于单细胞分析(包括单细胞采样,单细胞分析检测方法,单细胞衍生技术及单细胞溶膜等)进行了详细的综述,并介绍了电化学发光检测技术在毛细管电泳的应用。
     第二章,我们采用了毛细管电泳柱端安培检测的方法,以碳纤维簇微盘电极为工作电极分离并检测了多巴胺(dopamine, DA)、肾上腺素(epinephrine, E)和抗坏血酸(ascorbic acid, AA)。考察了缓冲液的pH值、缓冲液浓度、分离电压等实验参数对分离、检测的影响。最佳实验条件是,缓冲液为pH=9.04的17 mmol·L-1 Na2B4O7,分离电压为10 kV,检测电势为0.45 V(vs. SCE)。5 kV电渗进样10 s的条件下,各组分的检测限(S/N=3)分别为:多巴胺1.2×10-7 g·mL-1,肾上腺素1.7×10-7g·mL-1和抗坏血酸1.4×10-7 g·mL-1,并以此方法检测了盐酸多巴胺注射液、盐酸肾上腺素注射液和维生素C注射液的混合液中多巴胺、肾上腺素和抗坏血酸的含量,样品的加标回收率分别为DA 97%,E 96%和AA 105%。
     第三章,采用毛细管电泳柱端安培检测的方法,以碳纤维簇微盘电极为工作电极测定了单个大鼠腹腔肥大细胞中抗坏血酸的含量。检测抗坏血酸的最佳实验条件是,缓冲液pH=7.8的1.83×10-2 mol·L-1 Na2HPO4-1.70×10-3 mol·L-1 NaH2PO4,分离电压为20 kV,检测电势为0.8 V(vs. SCE),在此条件下,5.0 kV进样10 s,得到了抗坏血酸的线性范围(5.0×10-6 -5.0×10-4 mol·L-1),线性回归系数为0.9962,并以电泳峰电流与噪声比值(S/N)为3时得到浓度检测限为1.7×10-6 mol·L-1。将5.0×10-5 mol·L-1抗坏血酸标准溶液连续进样7次,得到抗坏血酸的迁移时间tm和峰电流ip的相对标准偏差(RSD)分别为0.85%和1.8%。在这一方法中,单个细胞通过电迁移引入分离毛细管的进样端,在2.0 kv的电压下引入0.1%的SDS作为细胞溶膜液,溶膜后细胞中的组分在毛细管中得到分离并检测。用上述方法测得单个大鼠腹腔肥大细胞中抗坏血酸的含量为2.4-7.1 fmol,这是对CE/柱端安培检测单个大鼠腹腔肥大细胞中抗坏血酸的首次报道。
     第四章,采用了一种自制的碳纤维簇微盘电极,以CE/柱端安培检测测定了单个大鼠肝细胞中的抗坏血酸。这种新型的碳纤维簇微盘电极灵敏度高,体积更小,适用于在多种仪器的狭窄空间内使用(例如MPI-A型毛细管电泳电化学发光检测仪和MPI-M型微流控芯片化学发光分析系统)。并且克服了传统电极中需要用汞做导体的缺点,因而对环境无污染。我们以此电极为工作电极检测了单个大鼠肝细胞中的抗坏血酸。该方法测得的抗坏血酸的回收率是91-97%,单个大鼠肝细胞中抗坏血酸的含量为28-63 fmol,这是对CE/柱端安培检测单个大鼠肝细胞中抗坏血酸的首次报道。
     第五章,我们采用毛细管电泳-电化学发光来检测单个肝细胞中抗坏血酸的含量,我们所使用的发光试剂是Ru(bpy)32+。确定了检测抗坏血酸的最佳实验条件是:缓冲液为pH=8.0的7.32×10-2 mol·L-1 NaH2PO4-1.16×10-2 mol·L-1 Na2HPO4,分离电压为15 kV,检测电势为1.2 V(vs. Ag/AgCl)。使用内径25μm,长60 cm的毛细管,在12 kV电渗进样10 s的条件下,检测抗坏血酸的线性范围为1.0×10-8-1.0×10-4 mol·L-1,检测限可达1.0×10-8 mol·L-1 (S/N=3)。7次平行测定的迁移时间与峰电流的相对标准偏差分别为0.38%和2.6%。这是将CE-ECL用于单细胞分析的首次报道。检测单个大鼠肝细胞中抗坏血酸的含量为16-62 fmol,与测得的肝细胞提取液中平均每个细胞中抗坏血酸的含量37 fmol·cell-1很接近,且与第四章中用CE/柱端安培检测测得的单个大鼠肝细胞中抗坏血酸的含量28-63 fmol相一致。
In the chapter one, first of all, the principle of capillary electrophoresis (CE) was introduced briefly. Then the analysis of single cells by CE including the single cell sampling, detection methods, derivatization methods and methods of lysing cell were reviewed in detail. Finally, the work for capillary electrophoresis with electrochemiluminescence detection was summarized.
     In the chapter two, dopamine (DA), epinephrine (E) and ascorbic acid (AA) were separated and detected by capillary electrophoresis with electrochemical detection (ED) at a carbon fiber microdisk bundle electrode. The effects of the running buffer pH, running buffer concentration and separation voltage on CE-ED were studied. The optimum conditions of separation and detection were 17 mmol·L-1 Na2B4O7 (pH 9.04) for the buffer solution, 10 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time, and 0.45 V (vs. SCE) for the detection potential. The limits of detection (signal to noise, S/N =3) of the analytes were 1.2×10-7 g·mL-1 for dopamine, 1.7×10-7 g·mL-1 for epinephrine and 1.4×10-7 g·mL-1 for ascorbic acid. The method was used to detected dopamine, epinephrine and ascorbic acid in the mixture of their injections, The recoveries were DA 97%, EP 96%和AA 105%.
     In the chapter three, capillary electrophoresis was employed for the analysis of ascorbic acid in individual rat peritoneal mast cells using an end-column amperometric detector with a carbon fiber microdisk bundle electrode. The optimum conditions of separation and detection were 1.83×10-2 mol·L-1 NaH2PO4-1.70×10-3 mol·L-1 Na2HPO4 (pH 7.8) for the buffer solution, 20 kV for the separation voltage, and 0.8 V (vs. SCE) for the detection potential. The limit of detection is 1.7×10-6 mol·L-1 (S/N = 3) and the linear range is 5.0×10-6 -5.0×10-4 mol·L-1 with a correlation coefficient of 0.9962 for the injection voltage of 5 kV and the injection time of 10 s. The response for a series of seven injections of 5.0×10-5 mol·L-1 AA resulted in a relative standard deviation of 0.85% for the migration time, and 1.8% for the electrophoretic peak current, respectively.Without any pretreatment of the capillary, individual rat peritoneal mast cells could be drawn into the capillary easily. Then the single cell was lysed by 0.1% SDS. The amount of AA in individual rat peritoneal mast cells was detected to be 2.4-7.1 fmol. This is the first report of AA in individual rat peritoneal mast cells.
     In the chapter four, AA in individual rat hepatocytes was determined by capillary electrophoresis with electrochemical end-column amperometric detection at a new kind of homemade carbon fiber microdisk bundle electrode (CFMBE).The new CFMBE was more beneficial to environmental protection because of free hydrargyrum in the creating process. Moreover it was created more simply and used expediently, so it was very suited to CE/ED. The recovery of AA was between 91% and 97%, and the amount of AA in single rat hepatocytes ranged from 28 to 63 fmol. This is the first report of AA in individual rat hepatocytes.
     In the chapter five, a new method of the detection of AA in individual rat hepatocytes was developed by combining capillary electrophoresis with electrochemiluminescence (ECL) based on tris(2,2′-bipyridine) ruthenium(Ⅱ) (Ru(bpy)32+). The optimum conditions of separation and detection are 7.32×10-2 mol·L-1 NaH2PO4-1.16×10-2 mol·L-1 Na2HPO4 (pH 8.0) for the buffer solution, 15 kV for the separation voltage, 12 kV and 10 s for the injection voltage and the injection time, and 1.2 V(vs. Ag/AgCl)for the detection potential. The limit of detection is 1.0×10-8 mol·L-1 (S/N = 3) and the linear range is 1.0×10-8-1.0×10-4 mol·L-1 for the injection voltage of 12 kV and the injection time of 10 s. The response for a series of seven injections of 1.0×10-5 mol·L-1 AA resulted in a relative standard deviation of 0.38% for the migration time, and 2.6% for the ECL intensity, respectively. The amount of AA in individual rat hepatocytes ranged from 16 to 62 fmol. It’s very closed to the amount of AA in the extract of rat hepatocytes 37 fmol. It’s also closed to the amount of AA in individual rat hepatocytes based on capillary electrophoresis with electrochemical end-column amperometric detection in the chapter four 28 to 63 fmol.
引文
[1] Hjerten S, Free zone electrophoresis[J], Chromatogr. Rev., 1967, 9: 122~129
    [2] Jongenson, J.W., Lukacs, K.D., Zone electrophoresis in open-tublar glass capillaries[J], Anal. Chem., 1981, 53: 1298~1302
    [3] Jongenson J.W., Lukacs K.D., Free-zone electrophoresis in glass capillaries[J],Clin. Chem., 1981, 27: 1551~1553
    [4]Jongenson, J.W., Lukacs, K.D., Capillary zone electrophoresis[J]. Science, 1983, 222: 222~226.
    [5] Tagliaro, F., A brief introduction to capillary electrophoresis[J], Forensic Science Intemationa, 1998, 192: 75~88
    [6] Ward, V.L., Khaledi, M.G., Nonaqueous capillary electrophoresis with laser induced fluorescence detection[J], J. Chromatogr. B, 1998, 718:15~22
    [7]黄梅,沈辉,毛细管电泳在生物活性物质分离中的应用近况[J],生物技术,1996,6:3-6
    [8] Rodriguez, I.. Li S.F., Surface deactivation in protein and peptide analysis by capillary electrophoresis[J]. Anal. Chim. Acta.1999, 383:1~26
    [9]夏其昌,毛细管电泳及在生命科学中的应用,生命的化学[J], 1996, 14: 36~39
    [10] Du,Y., Wang, E.K., Capillary electrophoresis and microchip capillary electrophoresis with electrochemical and electrochemiluminescence detection[J], J. Sep Sci., 2007, 30: 875~890
    [11] Kong, Y., Chen, H.W., Wang,Y.R., Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating[J], Electrophoresis, 2006, 27: 2940~2950
    [12] Ding, Y.S., Garcia, C.D., Determination of nonsteroidal anti-inflammatory drugs in serum by microchip capillary electrophoresis with electrochemical detection[J], Electroanalysis, 2006, 18: 2202~2209
    [13] Dayse L., Silva, P.D., Rüttinger, H.H., Development of capillary electrophoresis methods for quantitative determination of taurine in vehicle system and biological media[J], Electrophoresis, 2006, 27: 2330~2337
    [14] Weng, Q.F., Jin, W.R., Determination of free intracellular amino acids in single mouse peritoneal macrophages after naphthalene-2,3-dicarboxaldehyde derivatization by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2001, 22: 2797~2803
    [15] Zhou, T.S., Wu, F., Shi, G.Y., Study on pharmacokinetics and tissue distribution of norvancomycin in rats by CE with electrochemical detection[J], Electrophoresis, 2006, 27: 1790~1796
    [16] Tank, D.W., Sugimori, M., Spatially resolved calcium dynamics of mammalian Purkinje cellsin cerebellar slice[J], Science, 1988, 242: 773~777
    [17] Matioli, G. T., Niewisch, H. B., Electrophoresis of Hemoglobin in Single Erythrocytes[J], Science, 1965, 150: 1824~1826
    [18] Osborne, N.N., Do snail neurones contain more than one neurotransmitter[J], Nature, 1977, 270: 622~623
    [19] Purves, R.D.著,刘克球译,微电极方法[M].北京:北京大学出版社, 1985, 1~167
    [20] Betzing, E., Trautman, J.K., Breaking the diffraction barrier: optical microscopy on a nanometric scale[J], Science, 1991, 251: 1468~1470
    [21]翁前锋,单细胞分析[D],山东:山东大学,2001
    [22]孙雪梅,毛细管电泳安培检测酶及在单细胞中的应用[D],山东:山东大学,2003
    [23] Olefirowicz, T.M., Ewing, A.G., Capillary electrophpresis for sampling single nerve-cells[J], Chimia, 1991, 45: 106~108
    [24] Lee, T.T., Yeung, E.S., Quantitative determination of native proteins in individual human erythrocytes by capillary zone electrophoresis with laser-induced fluorescence detection[J], Anal. Chem., 1992, 64: 3045~3051
    [25] Hogan, B.L., Yeung, E.S., Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection[J], Anal. Chem., 1992, 64: 2841~2845
    [26] Xue, Q., Yeung, E.S., Indirect fluorescence determination of lactate and pyruvate in single erythrocytes by capillary electrophoresis[J], J. Chromatogr. A, 1994, 661: 287~295
    [27] Jin, W.R., Li, W., Xu, Q., Quantitative determination of glutathione in single human erythrocytes by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2000, 21: 774~779
    [28] Jin, W.R., Dong, Q., Ye, X., et.al, Assay of glutathione in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection[J], Anal. Biochem., 2000, 285: 255~259
    [29] Krylov, S.N., Starke, D.A., Arriaga, E.A., et.al, Instrumentation for chemical cytometry[J], Anal. Chem., 2000, 72: 872~877
    [30] Chen, S., Lillard, S.J., Continuous cell introduction for the analysis of individual cells by capillary electrophoresis [J], Anal.Chem., 2001, 73: 111~118
    [31] Sims, C.E., Meredih, G.D., Krasieva, T.B., et.al, Laser-micropipet combination for single-cell analysis[J], Anal.Chem., 1998, 70: 4570~4577
    [32] Xue, Q., Yeung, E.S., Differences in the chemical reactivity of individual molecules of an enzyme[J], Nature, 1995, 373: 681~682
    [33] Zhang, Z., Krylov, S., Arriaga, E.A., et.al,One-dimensional protein analysis of an HT29 human colon adenocarcinoma cell[J], Anal. Chem., 2000, 72: 318~322
    [34] Kennedy, R.T., Oates, M.D, Cooper, B.R., et.al, Microcolumn separations and the analysis of single cells[J], Science, 1989, 246: 57~63
    [35] Gilman, S. D., Ewing, A .G., Analysis of Single Cells by Capillary Electrophoresis with On-Column Derivatization and Laser-Induced Fluorescence Detection[J], Anal.Chem., 1995, 67: 58~64
    [36] Oguri, S., Ohta, Y., Suzuki, C., Direct detection of endogenous histamine in rat peritoneal mast cells by in-capillary derivatization high-performance capillary electrophoresis[J], J. Chromatogr. B, 1999, 736: 263~271
    [37] Gilman, S.D., Pietron, J.J., Ewing, A.G., Recent advances in the application of capillary electrophoresis to neuroscience[J], J. Microcolumn. Sep., 1994, 6: 373~384
    [38] Gilman, S.D., Ewing, A.G., Post-column derivatization for capillary electrophoresis using napthalene-2,3-dicarboxaldehyde and 2-mercaptoethanol[J], Anal. Methods Instrum., 1995, 2: 133~141
    [39]董谦,毛细管电泳/安培检测生物物质及单细胞分析[D],山东:山东大学,2001, 92~108
    [40] Dong, Q.,Wang, X., Zhu, L., et.al, Method of intracellular naphthalene-2, 3-dicarboxal-dehyde derivatization for analysis of amino acids in a single erythrocyte by capillary zone electrophoresis with electrochemical detection[J], J. Chromatogr. A, 2002, 959: 269~279
    [41] Tan,W.,Young, E.S., Simultaneous determination of enzyme activity and enzyme quantity in single human erythrocytes[J], Anal. Biochem.,1995, 226: 74~79
    [42] Zhang, L .,Yeung, E.S., Postcolumn reactor in capillary electrophoresis for laser-induced fluorescence detection[J], J.Chromatogr. A, 1996, 734: 331~337
    [43] Chang, H.T.,Young, E.S., Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laser-induced native fluorescence[J], Anal.Chem.,1995, 67: 1079~1083
    [44] Tong,W.,Yeung, E.S., On-column monitoring of secretion of catecholamines from single bovine adrenal chromaffin cells by capillary electrophoresis[J], J. Neurosci. Methods, 1997, 76: 193~201
    [45] Tong, W., Yeung, E.S., Determination of insulin in single pancreatic cells by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr.B, 1996, 685:35~40
    [46] Tong, W., Yermg, E.S., Monitoring single-cell pharmacokinetics by capillary electrophoresis and laser-induced native fluorescence[J], J. Chromatogr.B, 1997, 689: 321~325
    [47] Orwar, O., Fishman, H. A., Ziv, N. E., et.al, Use of 2,3-naphthalenedicarboxaldehydederivatization for single-cell analysis of glutathione by capillary electrophoresis and histochemical localization by fluorescence microscopy[J], Anal. Chem., 1995, 67: 4261~4268
    [48] Yik,Y. F., Lee, H.K., L i, S.F.Y, et.al, Micellar electrokinetic capillary chromatography of vitamin B-6 with electrochemical detection[J], J. Chromatogr.,1991, 585: 139~144
    [49] Wang, Z.,Young, E.S., Dual-enzyme assay of glutamate in single cells based on capillary electrophoresis[J], J. Chromatogr. B, 1997, 695: 59~65
    [50] Lillard, S.J.,Young, E.S., Lautamo, R.M., et.al, Separation of hemoglobin variants in single human erythrocytes by capillary electrophoresis with laser-induced native fluorescence detection[J], J. Chromalogr. A , 1995, 718: 397~404
    [51] Wong, K.S.,Yeung,E.S., Simulataneous monitoring of glutathione and major proteins in single erthrocytes[J], Mikrochim.Acta, 1995, 120: 321~327
    [52] Shippy, S.A., Jankowski, J.A.,Sweedler, J.V., Analysis of trace level peptides using capillary electrophoresis with UV laser-induced fluorescence[J], Anal. Chim. Acta, 1995, 307: 163~171
    [53] Cruz, L., Moroz, L.L., Gillette, R., et.al, Nitrite and nitrate levels in individual molluscan neurons: Single cell capillary electrophoresis analysis[J], J. Neurochem., 1997, 69: 110~115
    [54] Jankowski, J.A., Tracht, S., Sweedler, J.V., Assaying single cells with capillary electrophoresis[J], Tr. Anal. Chem., 1995, 14: 170~176
    [55] Hofstadler, S.A., Severs, J.C., Smith, R.D., et.al, Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J], Rapid Commun. Mass Spectrom., 1996, 10: 919~922
    [56]周伟红,吴明嘉,汪尔康,高效毛细管电泳安培检测的进展[J],分析化学, 1995, 23: 343~348
    [57] Swanek, F.D., Chen, G.Y., Ewing, A.G., Identification of multiple compartments of dopamine in a single cell by capillary electrophoresis with scanning electrochemical detection[J], Anal. Chem., 1996, 68: 3912~3916
    [58] Lu, W., Cassidy, R.M., Background noise in capillary electrophoretic amperometric detection[J], Anal. Chem.,1994, 66: 200~204
    [59] Chang, C., Chen, I., Cellulose acetate-coated porous polymer joint for capillary zone electro-phoresis[J], Anal. Chem., 1992, 64: 2461~2464
    [60] Wallingford, R.A.,Ewing, A.G., Capillary zone electrophoresis with elecffochemical detection[J], Anal. Chem., 1987, 59: 1762~1766
    [61] Wallingford, R.A., Ewing, A.G., Capillary zone electrophoresis with electrochemical detection in 12.7-μm diameter columns[J], Anal. Chem., 1988, 60: 1972~1975
    [62] Kristensen, H.K. Lau, Y.Y., Ewing, A.G., Capillary electrophoresis of single cells: Observation of two compartments of neurotransmitter vesicles[J], J. Neurosci. Methods, 1994, 51: 183~188.
    [63] Knight, A.W., A review of recent trends in analytical applicationas of electrogenerated chemiluminescence[J], Tr. Anal. Chem., 1999, 18: 47~62
    [64] Lee, W.Y., Tris(2,2'-bipyridyl)ruthenium(Ⅱ)electrogenerated chemiluminescence in analytical science[J], Mikrochim. Acta, 1997, 127: 19~39
    [65] Tokel, N.E., Bard, A.J., Electrogenerated chemiluminescence IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium (Ⅱ) dichloride[J], J. Am. Chem. Soc.,1972, 94: 2862~2863
    [66]Yin, X.B., Dong, S.J., Wang, E.K., Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium and its derivatives[J], Tr. Anal. Chem., 2004, 23: 432~441
    [67] Gerardi, R.D., Barnett, N.W., Lewis, S.W., Analytical applications of tris(2,2'-bipyridyl)- ruthenium(III) as a chemiluminescent reagent[J], Anal. Chim. Acta, 1999, 376: 1~41
    [68] Tokel-Takvoryan, N.E., Hemingway, R.E., Bard, A.J., Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemilumineseence studies of ruthenium chelates[J], J. Am. Chem. Soc. ,1973, 95: 6582~6589
    [69] Rubinstein, I., Bard, A.J., Electrogenerated chemiluminescence. 37. Aqueous ECL system based on Ru(2,2'-bipyridine)32+ oxalate or organic acids[J], J. Am. Chem. Soc., 1981, 103: 512~516
    [70] Nonidez, W.K., Leyden, D.E., Effect of reducing agents of pharmacological importance on the chemiluminescence tris (2, 2' -bipyridine) ruthenium (П)[J], Anal. Chim. Acta, 1978, 96: 401~404
    [71] Noffsinger, J.B., Danielson, N.D., Generation of chemiluminescence upon. reaction of aliphatic amines with tris(2,2. 0. -bipyridine)ruthenium(III)[J], Anal. Chem., 1987, 59: 865~868
    [72] Leland, J. K., Powell, M. J., Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropylamine[J], J Electrochem Soc., 1990, 137: 3127~3131
    [73] Brune, S. N., Bobbitt, D. R., Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris (2, 2' -bipyridyl) ruthenium (III) with amino acids[J], Anal. Chem., 1992, 64: 166~170
    [74] F?hnrich, K. A., Pravda, M., Guilbault, G. G., Recent applications of electrogenerated chemiluminescence in chemical analysis[J], Talanta, 2001, 54: 531~559
    [75] Tsukagoshi, K., Miyamoto, K., Nakajima, R., Ouchiyam, N., Sensitive determination of metalions by liquid chromatography with tris(2,2'-bipyridine)ruthenium (II) complex electrogenerated chemiluminescence detection[J], J. Chromatogr.A, 2001, 919: 331~337
    [76] Tsukagoshi, K., Okuzono, N., Nakajima, R., Separation and determination of emetine dithiocarbamate metal complexes by capillary electrophoresis with chemiluminescence detection of the tris(2,2’-bipyridine)-ruthenium(II)complex[J], J Chromatogr.A, 2002, 958: 283~289
    [77] Woltman, S.J., Even, W.R., Weber, S.G., Chromatographic detection using tris(2.2’-bipyridyl)ruthenium(iii) as a fluorogenic electron-transfer reagent[J], Anal. Chem., 1999, 71: 1504~1512
    [78] Morita, H., Konishi, M., Electrogenerated Chemiluminescence derivatization reagents for carboxylic acids and amines in high-performance liquid chromatography using tris(2,2'-bipyridine)ruthenium(II) [J], Anal. Chem., 2002, 74: 1584~1589
    [79] Uchikura, K.,Electrochemiluminescence reaction by mixing tris(2,2'-bipyridine) ruthenium(iii) with ketones[J], Anal. Sci., 1999, 15: 1049~1050
    [80] Wang, H., Xu, G., Dong, S.. Electrochemiluminescent microoptoprobe with mini-grid working electrode and self-contained sample container[J], Electrochem. Commun. 2002, 4, 214~217
    [81] Jin, E.S., Norris, B.J., Pantano, P., An electrogenerated chemiluminescence imaging fiber electrode chemical sensor for NADH[J], Electroanalysis, 2001, 13: 1287~1290
    [82] Egashira, N., Kumasako, H., Uda, T., et.al, Fabrication of a trimethylamine gas sensor based on electrochemiluminescence of Ru(bpy)32+/nafion gel and its application to a freshness sensor for seafood[J], Electroanalysis, 2002, 14: 871~873
    [83] Waguespack, B.L., Lillquist, A., Townley, J.C., et.al, Evaluation of a tertiary amine labeling protocol for peptides and proteins using Ru(bpy)33+-based chemiluminescence detection[J], Anal. Chim. Acta, 2001, 441: 231~241
    [84] Yan, K.Y., Smith, R.L., Collins, S.D., Fluidic microchannel arrays for the eleetrophoretic separation and detection of bioanalytes using electrochemiluminescence[J], Biomedical Microdevices, 2000, 2: 221~229
    [85] Greenwood, P.A., Merrin, C., McCreedy, T., et.al, Chemiluminescenceμ-TAS for the determination of atropine and pethidine[J], Talanta, 2002, 56: 539~545
    [86] Zhan, W., Alvarez, J., Crooks, R.M., Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J], J. Am. Chem. Soc., 2002, 124: 13265~13270
    [87] Wang, H., Xu, G., Dong, S., Electrochemiluminescence of dichlorotris (1.10-phenanthroline) ruthenium (11) with peroxydisulfate in purely aqueous solution at carbon paste electrode[J],Microchem. J., 2002, 72: 43~48
    [88] McCall. J., Alexander, C., Richter, M.M.,Quenching of electrogenerated chemiluminescence by phenols, hydroquinones, catechols, and benzoquinones[J], Anal. Chem., 1999, 71:2523~2527
    [89] Honda, K.,Yoshimura, M., Rao, T.N., et.al, Electrogenerated chemiluminescence of the ruthenium tris(2,2`)bipyridyl/amines 'system on a boron-doped diamond electrode[J], J. Phys. Chem. B, 2003, 107: 1653~1663
    [90] Huang, T., Murray, R. W., Quenching of Ru(bpy)32+ fluorescence by binding to Au nanoparticles[J], Langmuir, 2002, 18: 7077~7081
    [91] Zu. Y., Bard, A. J., Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J], Anal. Chem., 2000, 72: 3223~3232
    [92] Zu, Y., Ding, Z., Zhou, J., et.al, Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip[J], Anal. Chem., 2001,73: 2153~2156
    [93] Zu, Y., Bard, A. J., Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2')bipyridylruthenium(ii)/tripropylamine system on electrode surface hydrophobicity[J], Anal. Chem., 2001, 73: 3960~3964
    [94] Lai, R. Y., Chiba, M., Kitamura, N., et.al, Electrogenerated chemiluminescence. 68.detection of sodium ion with a ruthenium(ii) complex with crown ether moiety at the 3,3'-positions on the 2,2'-bipyridine ligand[J], Anal. Chem., 2002, 74: 551~553
    [95] Fan, F.F., Bard, A.J., Scanning probe microscopy studies of solid-state molecular electroluminescent devices based on tris(2,2'-bipyridine) ruthenium(ii) complexes[J], J Phys. Chem. B, 2003, 107: 1781~1787
    [96] Lai, R.Y., Bard, A. J., Electrogenerated chemiluminescence. 70. The application of ecl to determine electrode potentials of tri-n-propylamine, its radical cation, and intermediate free radical in mecn/benzene solutions[J], J. Phys. Chem. A , 2003, 107: 3335~3340
    [97] Yin, X.B., Qiu, H.B., Sun, X.H., et.al, Capillary electrophoresis coupled with electrochemiluminescence detection using porous etched joint[J],Anal. Chem., 2004, 76: 3846~3850
    [98] Du,Y., Wei, H., Kang, J.Z., et.al, Microchip capillary electrophoresis with solid-state electrochemiluminescence detector[J], Anal. Chem., 2005, 77: 7993~7997
    [99] Ding, S.N., Xu, J.J., Chen, H.Y., Tris(2,2’-bipyridyl)ruthenium(II)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis[J], Electrophoresis, 2005, 26: 1737~1744
    [100] Li, T., Yuan, J.P., Yin,J.Y., et.al, Capillary electrophoresis with electrochemiluminescencedetection for measurement of aspartate aminotransferase and alanine amino transferaseactivities in biofluids[J], J. Chromatogr. A, 2006, 1134: 311~316
    [101] Xu,Y.H., Gao,Y., Wei,H., et.al, Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes[J], J Chromatogr.A, 2006, 1115: 260~266
    [102] Yuan, J.P., Li,T., Yin, X.B., et.al, Characterization of prolidase activity using capillary electrophoresis with tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence Detection and application to evaluate collagen degradation in diabetes mellitus[J], Anal. Chem., 2006, 78: 2934~2938
    [103] Li, J.G., Zhao, F.J., Ju, H.X., Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection[J], Anal. Chim. Acta, 2006, 575: 57~61
    [104] Gilman, S.D., Silverman, C.E., Ewing, A.G., Electrogenerated chemiluminescence detection for capillary electrophoresis[J], J Microcolumn Sep., 1994, 6: 97~106
    [1] Sun, W., Yang, M.X., Jiao, K., Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application[J], Anal. Bioanal. Chem., 2007, 389: 1283~1291
    [2] Li, N.B., Ren, W., Luo, H.Q., Caffeic acid-modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine[J], Electroanalysis, 2007, 19: 1496~1502
    [3] Li, J., Lin, X.Q., Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid[J], Anal. Chim. Acta, 2007, 596: 222~230
    [4] Jeyalakshmi, S.R., Kumar, S.S., Mathiyarasu, J., et al, Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes[J], Indian J. Chem. Sec A, 2007, 46: 957~961
    [5] Wang, C., Wang, G.F., Jiao, S.F., Preparation of aminylferrocene/nanogold modified glassy carbon electrode and its electrocatalysis on dopamine[J], Annali di Chimica, 2007, 97: 331~342
    [6]李峰,朱果逸,铬(Ⅵ) -过氧化氢噜米诺化学发光法测定痕量抗坏血酸[J],分析化学,2002, 30:580~582
    [7]李峰,张文艳,朱果逸,流动注射化学发光抑制法测定抗坏血酸[J],分析化学,2000, 28:1523~1526
    [8] Yao, H., Sun, Y.Y., Lin, X.H., Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode[J], Anal. Sci. 2007, 23: 677~682
    [9]马伟,孙登明,聚L.精氨酸修饰电极存在下同时测定多巴胺和肾上腺素[J],分析化学研究报告, 2007, 35: 66~70
    [10] Yogeswaran, U., Thiagarajan, S., Chen, S.M., Nanocomposite of functional multiwall carbon nanotubes with nafion, nano platinum, and nano biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid[J], Anal. Biochem., 2007, 365: 122~131
    [11]孙元喜,冶保献,周性尧,聚中性红膜修饰电极上神经递质的电化学行为及应用[J],分析化学, 1998, 26: 506~510
    [12] Landers, J., Handbook of capillary electrophoresis[M], CRC Press, Boca Raton, FL 1997
    [13] Shin, D.C., Sarada, B.V., Tryk, D.A., Fujishima, A., Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis[J], Anal. Chem., 2003, 75: 530~534
    [14]刘继锋,杨秀荣,汪尔康,毛细管电泳安培检测技术进展[J],分析化学, 2002, 30: 748~753
    [15] Jin, W.R., Weng, Q.F., Wu, J.R., Determination of bovine serum albumin by capillary zone electrophoresis with end-column amperometric detection at the carbon fiber microdisk array electrode[J], Anal.Chim.Acta, 1997, 342: 67~74
    [16] Jin, W.R., Yu, D.Q., Dong, Q., et.al, A new method of quantification of pipemidic acid by capillary zone electrophoresis with end-column amperometric detection[J], Electrophoresis, 2000, 21: 925~929
    [1]翁前锋,单细胞分析[D],山东:山东大学,2001
    [2] Lori, A.W., Thomas, P., Ewing, A.G., Capillary electrophoresis of single mammalian cells[J], Electrophoresis, 2004, 25: 1181~1187
    [3] Weng, Q.F., Jin, W.R., Determination of free intracellularamino acids in single mouse peritoneal macrophages after naphthalene-2,3-dicarboxaldehyde derivatization by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2001, 22: 2797~2803
    [4] Jin, W.R., Li, W., Xu, Q., Quantitative determination of glutathione in single human erythrocytes by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2000, 21: 774~779
    [5] Jin, W.R., Dong, Q., Ye, X., et.al, Assay of glutathione in individuao mouse pertoneal macrophages by capillary zone electrophresis with electrochemical detection[J], Anal. Biochem., 2000, 285: 255~259
    [6] Weng, Q.F., Jin, W.R., Determination offree intracellularamino acids in single mouse peritoneal macrophages after naphthalene-2,3-dicarboxaldehyde derivatization by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2001, 22: 2797~2803
    [7] Jin, W.R., Jiang, L., Measurementof ascorbic acid in single human neutrophils by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2002, 23: 2471~2476
    [8]杜卫东,沈达明,黄春锦,周颖奇,大剂量维生素C对急性胰腺炎患者细胞免疫功能的影响[J],胃肠病学,2002,7:213~215
    [9] Mohammad, K.A., Said S., Shahram T., PVC-based Mn(III) porphyrin membrane-coated graphite electrode for determination of histidine[J], Anal. Chem., 1999, 71: 2502~2505
    [10] Ghasemi, V., Raoof, J.B., Ojani, R.,et.al, Voltammetric determination of ascorbic acid on a ferrocenederivative-modified carbon paste electrode[J], Bull Electrochem., 2005, 21: 115~122
    [11] Ichiro, K., Toshio, I., Measurement of ascorbate and dehydroascorbate contents in biological fluids[J], Anal. Chem., 1997, 69: 216~220
    [12] Sergey, P., Alexander, M., Myron, W., Flow cytometric assay for evaluation of the effects of cell density on cytotoxicity and induction of apoptosis[J], Cytometry, 2001, 43: 199~203
    [13] Elliott, M., Chithan K., Theoharis C.T., The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease,and cancer[J], Pharmacol Rev., 2000, 52: 673~751
    [14]喻利娟,广西玉岭地区女性中小学生头发微量元素含量及其年龄变化的研究[D],陕西杨陵:西北农林科技大学,2002
    [15]程义勇,生物医学微量元素数据手册[M],天津:天津科学技术出版社, 1996, 1~112
    [16]李峰,朱果逸,铬(Ⅵ)-过氧化氢噜米诺化学发光法测定痕量抗坏血酸[J],分析化学2002,30:580~582
    [17] Yin, H.L., Qian, Z.F., Morphologic study of mast cell and lung fibroblasts in co-culture[J], Acta Anatomica Sinica, 1998, 29: 81~85
    [18]马忠明,赵凯,钱伟钰,郑筱祥,组胺敏感离子选择性微电极及其应用[J],分析化学,1997,25:750~754
    [19] Sun, X.M., Jin, W.R., Catalysis-electrochenical determination of zeptomole enzyme and its application for single-cell analysis[J], Anal. Chem., 2003, 75: 6050-6055
    [1]翁前锋,单细胞分析[D],山东:山东大学,2001
    [2] Xu, X.Q., Ye, H.Z., Wang, W., et.al, Determination of flavonoids in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. by capillary electrophoresis with electrochemical detection[J],Talanta, 2006, 68: 759~764
    [3] Yeung, E.S., Study of Single Cells by using Capillary Electrophoresis and Native Fluorescence Detection[J], J. Chromatogr A, 1999, 830: 243~262
    [4] Jin, W.R., Jiang, L., Measurement of ascorbic acid in single human neutrophils by capillary zone electrophoresis with electrochemical detection[J], Electrophoresis, 2002, 23: 2471~2476
    [5] Wang, A., Fan, g.Y., Applications of capillary electrophoresis with electrochemical detection in pharmaceutical and biomedical analyses[J], Electrophoresis, 2000, 21: 1281~1290
    [6]方禹之,龚飞雁,刘晓峰,方晓明,叶建农,高效毛细管电泳-电化学检测对废水中优先监测酚类的测定[J],研究分析化学,1998, 26:694~697
    [7]刘少民,宋立楠,张太森,方禹之,烟草中糖类物质的高效毛细管电泳-安培检测研究[J],分析化学,2000,28:1233~1236
    [8] Andrei, F., D?net, M.B., Hassan, Y., Aboul, E., Flow injection system with chemiluminometric detection for enzymetic determination of ascorbic acid[J], Luminescence, 2000, 15: 305~309
    [9]张科生,黄山鹰,人类抗坏血酸(维生素C)遗传缺陷学说暨人类第一病因学说(上)-五个关于维生素C的重大发现及其对人类健康的深远意义[J],医学与哲学(人文社会医学版) 2006,312:55~58
    [10] Wu, F., Tyml, K., Wilson, J.X., Ascorbate inhibits iNOS expression in endotoxin and IFN gamma-stimulatedratskeletal muscle endothelial cells[J], FEBS Lett., 2002, 520: 122~126.
    [11] Dela, F.M., Victor, V.M., Ascorbic acid and N-acetylcysteine improvein vitro the function of lymphocytes from mice with endotoxin-induced oxidative stress[J], Free Radic Res., 2001, 35: 73~84
    [12] Kim, J.Y., Lee, S.M., Effect of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis[J], Life Sci., 2004, 75: 2015~2026
    [13] Korcok, J., Wu, F., Tyml, K., et.al, Sepsis inhibits reduction of dehydroascorbic acid and accumulation of ascorbate in astroglial cultures: intracellular ascorbate depletion increases nitric oxide synthase induction and glutamate uptake inhibition[J], J Neurochem., 2002, 81: 185~93
    [14] Tan, P.H., Sagoo, P., Chan, C., et.al, Inhibition of NF-kappaB and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells[J], J Immunol.,2005, 174: 7633~7644
    [15] Chan, T.S., Shangari, N., Wilson, J.X., et.al, The biosynthesis of ascorbate protects isolated rat hepatocytes from cumene hydroperoxide-mediated oxidative stress[J], Free Radic Biol. Med., 2005, 38: 867~873
    [16]劳全林,大鼠肝细胞的离体培养及其功能的研究[D],华南农业大学硕士论文,2001
    [1] Jorgenson, J.W., Lukacs, K.D., High resolution separations based on electrophoresis and electroosmosis[J], J. Chromatogr., 1981, 218: 209~216
    [2] Jorgenson, J.W., Lukacs, K.D., Capillary zone electrophoresis[J], Science, 1983, 222: 266-272.
    [3] Wallingford, R.A.,Ewing, A.G., Amperometric detection of catechols in capillary zone electrophoresis with normal and micellar solutions[J], Anal Chem., 1988, 60: 258~263
    [4] Wallingford, R.A., Ewing, A.G., Capillary zone electrophoresis with electrochemical detection[J], Anal. Chem., 1987, 59: 1762~1766
    [5] Yik, Y.F., Lee, H.K., Li, S.F., et.al., Micellar electrokinetic capillary chromatography of vitamin B-6 with electrochemical detection[J], J. Chromatogr., 1991, 585: 139~144
    [6] Huang, X., Zare, N., Use of an on-column frit in capillary zone electrophoresis: sample collection[J], Anal. Chem., 1990, 62: 443~446
    [7] Tokel, N.E., Bard, A.J., Electrogenerated chemiluminescence. Ix electrochemistry and emission from systems containing tris (2,2'-bipyridine) ruthenium(II)dichloride[J], J. Am. Chem. Soc., 1972, 94: 2862~2863
    [8] McCord, P., Bard, A.J., Electrogenerated chemiluminescence.54 electrogenerated chemiluminescence of ruthenium (II) 4,4’-diphenyl-2,2'-bipyridine and ruthenium(II) 4,7-diphenyl-1,10-phenanthroline systems in aqueous and acetonitrile solutions[J], J. Electroanal. Chem., 1991, 318: 91~99
    [9] Noffsinger, J.B., Danielson, N.D., Generation of chemiluminescence upon reaction of aliphatic amines with tris(2, 2,-bipyridine)ruthenium(III)[J], Anal. Chem., 1987, 59: 865~868
    [10] Knight, A.W., Greenway, G.M., Indirect ion-annihilation electrogenerated chemiluminescence and its application to the determination of aromatic tertiary-amines[J], Analyst, 1995, 120: 2543~2547
    [11] Lee, W.Y., Tris(2,2,-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science[J], Mikrochim. Acta, 1997, 127: 19~39
    [12] Egashira, N., Kumasako, H., Kurauchi, Y., et.al, Electrochemiluminescence of hydroxyl compounds by cyclic square-wave electrolysis and its application to an alcohol sensor[J], Anal. Sci., 1994, 10: 405~408
    [13] Martin, A.F., Nieman, T.A., Glucose quantitation using an immobilized glucose-dehydrogenase enzyme reactor and a tris(2,2’-bipyridyl)ruthenium(II) chemiluminescent sensor[J], Anal. Chim. Acta, 1993, 281: 475~481
    [14] 0' Connell, C.D., Juhasz, A., Kuo, C., et.al, Detection of tyrosinase mrna in melanoma byreverse transcript ion-pcr and electrochemiluminescence[J], Clin. Chem., 1998, 44: 1161~1169
    [15] Dickson, J.A., Ferris,M.M., Milofsky, R.E., Tris(2,2’-bipyridyl)ruthenium(III) as a chemiluminescent reagent for detection in capillary electrophoresis[J], J. High Resol. Chromatogr., 1997, 20: 643~646
    [16] Wang, X., Bobbit, D.R., In situ cell for electrochemically generated Ru(bpy)33+-based chemiluminescence detection in capillary electrophoresis[J], Anal. Chim. Acta, 1999, 383: 213~219
    [17] Hendrickson, H.P., Anderson, P., Wang, X., et.al, Compositional analysis of small peptides using capillary electrophoresis and Ru(bpy)33+-based chemiluminescence detection[J], Microchem. J., 2000, 65:189~195
    [18] Forbes, G.A., Nieman, T.A., Sweedler, J.V., On-lineelectrogenerated Ru(bpy)33+ chemiluminescent detection of beta-blockers separated with capillary electrophoresis[J], Anal. Chim. Acta, 1997, 347: 289~293
    [19] Bobbitt, D.R., Jackson, W.A., Hendrickson, H.P., Chemiluminescent detection of amines and amino-acids using in situ generated Ru(bpy)33+ following separation by capillary electrophoresis[J], Talanta, 1998, 46: 565~572
    [20] Wang, X., Bobbitt, D.R., Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography[J], Talanta, 2000, 53: 337~345
    [21] Chen, X., Sato, M., High-performance liquid chromatographic determination of ascorbic acid in soft drinks and apple juice using Tris(2,2’-bipyridine)ruthenium(II)[J] electrochemiluminescence, Anal. Sci., 1995, 11: 749-754

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700