用户名: 密码: 验证码:
转基因抗虫棉生育特征及氮磷钾吸收分配特点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国种植和育成的转基因棉花品种作为研究对象,于2003~2004年在扬州大学江苏省遗传生理开放实验室,探讨移栽方式下棉株生长发育、碳氮代谢和氮磷钾吸收分配的特点。研究获得的主要结果如下:
     1,转基因抗虫棉参试品种的生长发育变化呈4种生长发育特征。中棉所41、中棉所29、鲁棉研15、科棉1号和科棉3号这5个品种的株高和LAI增长快,现蕾和成铃强度大,营养器官和生殖器官生物量高,且两者比例协调,可称为生长发育两旺型。GK19和GK99088这2个品种在盛花前的株高和LAI增长快、现蕾强度大,结铃前期成铃速度快,营养器官和生殖器官生物量较高且较为协调,可称为生长发育前期旺盛型。鲁棉研22和科棉4号这2个品种在盛花前株高和LAI增长较慢,现蕾速度慢,结铃前期成铃速度慢,盛花后现蕾和成铃强度大,生殖器官生物量积累高,可称为生长发育后期旺盛型。SGK321和鲁棉研16这2个品种的株高和LAI增长过快,现蕾和成铃强度低,营养器官生物量高,比例也高,可称为营养生长过旺型。
     2,相应地具有这4种生长发育特征的品种在碳氮代谢生理上表现如下。生长发育两旺型品种,氮代谢和碳代谢生理活性都强;叶片全氮、游离氨基酸和可溶性蛋白含量高,NR和GPT活性大,叶绿素、净光合速率和可溶性糖含量高,蔗糖转化酶活性大。生长发育前期旺盛型品种,在盛花前氮代谢和碳代谢生理活性强,盛花后碳氮代谢生理活性低;盛花前叶片全氮、游离氨基酸和可溶性蛋白含量高,NR和GPT活性大,叶绿素、净光合速率和可溶性糖含量高,蔗糖转化酶活性大。生长发育后期旺盛型品种,在盛花前碳氮代谢生理活性低,盛花后氮代谢和碳代谢生理活性增强;盛花后叶片全氮、游离氨基酸和可溶性蛋白含量高,NR和GPT活性大,叶绿素含量、净光合速率和可溶性糖含量高,蔗糖转化酶活性大。营养生长过旺型的品种,其氮代谢生理活性较强,碳代谢生理活性较弱;叶片全氮、
The study was undertaken on eleven boll worm resistant transgenic cotton cultivars, which were CCRI41、 CCRI29、 LumianyanNO.15、 KemianNO.1、 KemianNO.3、 GK19、 GK99088、 LumianyanNO.22、 KemianNO.4. SGK321 and LumianyanNO.16,during the 2003 and 2004 growing seasons at the Jiangsu Provincial Key Laboratory of Crops Genetics and physiology, Yangzhou University, Yangzhou, China. The object of this study was to investigate the characteristics of development, the carbon and nitrogen metabolism and the absorption and distribution of nitrogen、 phosphorus and potassium. The main results were as follows:1, There were four development characteristics for the eleven boll worm resistant transgenic cotton cultivars. CCRI41 、 CCRI29、 LumianyanNO.15、 KemianNO.1 and KemianNO.3 had both strong vegetative and reproductive growth in whole growth period. They had bigger growth rate for plant height and LAI, greater intensity for square appearance and boll setting, and higher dry matter weight for vegetative and reproductive organs, the ratio of the reproductive organs and vegetative organs dry matter weight was about 1:1. GK19 and GK99088 had both strong vegetative and reproductive growth before full-flower period. They had bigger growth rate for plant height and LAI, greater intensity of square appearance and boll setting before the peak-flowering period. They kept the balance between vegetative and reproductive growth. LumianyanNO.22 and KemianNO.4 had both strong vegetative and reproductive growth after
    peak-flowering period. They had lower growth rate for plant height and LAI, and smaller intensity of square appearance and boll setting before peak-flowering period, but greater intensity of square appearance and boll setting, higher reproductive dry matter weight after the peak-flowering period. They were stronger reproductive growth. SGK321 and LumianyanNO.16 had excessive vegetative growth. They had greatest growth rate for plant height and LAI in the whole period, lowest intensity of square appearance and boll setting, and highest vegetative organs dry matter weight of vegetative organs.2, There were same characteristics for the eleven cultivars in carbon and nitrogen physiological metabolism. The cultivars(CCRI41 、 CCRI29 、 LumianyanNO.15. KemianNO.l and KemianNO.3) had both strong carbon and nitrogen physiological metabolism in the whole period, they had higher contents for leaf total nitrogen, amino acid, soluble protein, soluble sugar, chlorophyll, higher net photosynthetic intensity, and greater enzyme activities for NR, GPT and Sucroase. The GK19 and GK99088 had both strong carbon and nitrogen physiological metabolism before peak flowering period, they had higher contents for leaf total nitrogen, amino acid, soluble protein, soluble sugar, chlorophyll, higher net photosynthetic intensity, and greater enzyme activities for NR, GPT and Sucroase before peak flowering period. LumianyanNO.22 and KemianNO.4 which had both strong carbon and nitrogen physiological metabolism after peak flowering, they had higher contents for leaf total nitrogen, amino acid, soluble protein, soluble sugar, chlorophyll, higher net photosynthesis rate, and greater enzyme activities for NR, GPT and Sucroase after the peak flowering period. SGK321 and LumianyanNO.16 had strong nitrogen metabolism and weak carbon metabolism, they had higher contents for leaf total nitrogen, amino acid, soluble protein, soluble sugar, chlorophyll, higher net photosynthesis rate, and greater enzyme activities for NR and GPT, weaker Sucroase activity.3, There are also four characteristics in absorption and distribution of nitrogen, phosphorus and potassium for the eleven cultivars. The cultivars( CCRI41, CCRI29、 LumianyanNO.15, KemianNO.l and KemianNO.3) had greater absorption amount for nitrogen, phosphorus and potassium in the
    whole period, especially during June five to July five and July twenty to August thirty. The absorption ratio of nitrogen, phosphorus and potassium was 1: 0.383 ~ 0.395: 1.142 ~ 1
引文
[1] 涂松林,施爱民.我国转基因抗虫棉研究利用现状与展望[J].江西棉花,2001,(4):31-33
    [2] 夏敬源.棉花害虫生物生态控制关键技术研究[J].棉花学报,1997,(5):225-228
    [3] 陈素彬,王朝生,柴友荣,等.转Bt基因棉花抗红铃虫性的鉴定[J].中国棉花,1997,15(12):5-17
    [4] 张存信.抗虫棉的开发和利用[J].天津农业科学[J],2000,(3):41-44
    [5] 王仁祥.中国转基因抗虫棉的应用及发展对策[J].棉花学报,2003,15(3):180-184
    [6] 李汝忠,郭庆正,葛逢珠.转基因抗虫棉研究利用现状与前瞻[J].山东农业科学,1997,(2):47-50
    [7] 何忠伟,周文新,陈艳芬,等.中国转基因抗虫棉发展的现状与对策[J].科技和产业,2004,(11):27-30
    [8] 夏敬源,马志强,田明军.国产转基因抗虫棉的发展成就及其作用[J].中国农技推广,2004,(6):4-6
    [9] 曹桂艳.外源基因棉抗虫性研究与应用进展[J].辽宁农业科学,2001,(1):33-35
    [10] 邢朝柱,靖深蓉,袁有禄,等.转Bt基因棉花性状表现、存在问题及对策[J].安徽农业科学,1998,26(3):201-204
    [11] 李爱莲,曾献英,吕双俊,等.转基因抗虫棉及其害虫防治技术[J].河南农业科学,2002,(1):12-13
    [12] 李保成,陈红,宋庆平,等.新疆转基因抗虫棉研究现状与建议[J].中国棉花,2002,29(6):15-17
    [13] 王艳霞.转基因抗虫棉引种及丰产栽培技术初探[J].辽宁农业职业技术学院学报,2002,(1):17-18
    [14] 赵建周,赵奎军,卢美光,等.华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究[J].中国农业科学,1998,31(5):1-6
    [15] 汪若海,李秀兰.我国转基因抗虫棉应用现状及建议[J].生物技术通报,2000,(5):1-6
    [16] 蒋玉峰,胡新燕.我国转基因抗虫棉存在的问题及建议[J].种子,1999,(5): 71-72
    [17] 秦玉金,赵俊.国内转基因抗虫棉研究应用进展及存在问题[J].安徽农业科学,2004,32(2):363-364
    [18] 喻树讯,李付广,刘金海.我国抗虫棉发展战略[J].棉花学报,2002,15(4):238-242
    [19] 苏少泉.转基因棉花的种植与问题[J].世界农业,2003,(11):43-44
    [20] 王孝纲,帅启荣,别墅,等.转基因抗虫棉的研究利用与市场前景[J].中国棉花,2002,29(6):12-14
    [21] 王孝纲,别墅,张教海,等.我国转基因棉花育种概况与展望[J].湖北农业科学,2003,(3):32-36
    [22] 董合忠.棉花的抗虫育种与抗虫棉世界农业[J].1995,(7):25-26
    [23] 邹奎.我国棉花转基因抗虫棉品种现状分析[J].中国棉花,2003,30(8):2-4
    [24] 强学杰,余行简,何革命,等.转基因抗虫棉品种的综合评价[J].江西棉花,2003,(5):21-24
    [25] 宋天俊,吴洪兴,刘景珍.转基因抗虫棉发展现状及产业化[J].农业科技通讯,2004,(9):34-35
    [26] 邹奎.国产转基因抗虫棉品种推广建议[J].中国农技推广,2002,(5):25-26
    [27] 芮昌辉,范贤林,董丰收,等.不同转基因抗虫棉对棉铃虫抗虫性的时空动态[J].昆虫学报,2002,45(5):567-570
    [28] 束春娥,柏立新,张龙娃,等.江苏棉区种植转基因抗虫棉GK22对棉田害虫、杂草种群的影响[J].华东昆虫学报,2002,11(2):46-52
    [29] 王志霞.转基因棉花研究进展[J].江苏农业学报,2003,19(2):74
    [30] 刘冬青.棉花转基因研究进展[J].江西农业学报,2003,15(2):39-42
    [31] 徐建祥,尤志斌,王渭芹,等.转基因Bt棉种植的经济学分析[J].扬州大学学报(农业与生命科学版),2004,25(3):65-70
    [32] http://textile.icxo.com/htmlnews/2004/09/23/374243.htm
    [33] 顾万荣,李玉侠.国产转基因抗虫棉研究进展[J].安徽农业科学,2005,(4):163-165
    [34] 夏敬源,崔金杰,常蕊芹.转基因抗虫棉对甜菜夜蛾的抗性研究[J].中国棉花,2000,27(9):10-11
    [35] 吕淑平,郭小平,赵元明.转基因抗虫棉Bt基因导入对受体材料农艺性状的 影响[J].中国农学通报,2004,(3):36-37
    [36] 林毅,郑厚今,高用明,等.抗虫棉抗虫特性及产量性状的研究[J].安徽农业大学学报,1998,25(2):174-177
    [37] 陈德华,吴云康,段海,等.转基因抗虫棉杂交种生长规律及其生理特性的研究[J].中国棉花,1997,24(6):15-17
    [38] 丰嵘.外源Bt基因对棉花产量性状及抗虫性的影响[J].棉花学报,1996,8(1):10-13
    [39] 束春娥,柏立新,孙以文,等.转基因抗虫棉的抗性鉴定[J].江苏农业学报,1997,13(1):22-26
    [40] 周冬生,吴振廷,王学林,等.转Bt基因棉的抗棉铃虫性及其生理作用研究进展[J].安徽农业科学,2000,28(1):65-69
    [41] 束春娥.转Bt基因棉Bt毒性表达的时空动态及对棉铃虫生存繁殖的影响[J].棉花学报,1990,10(1):301-306
    [42] 张俊,郭香墨,马丽华.不同转基因棉的抗虫性与Bt毒蛋白含量关系的研究[J].棉花学报,2002,14(3):158-161
    [43] 邢朝柱,靖深蓉.转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗性的影响[J].棉花学报,2001,13(1):11-15
    [44] Perlak F J, Deatow R W, Armstrong TA. Inset resistant cotton plants. Bio/Technology, 1990(8): 939-943
    [45] Johnie N.Growth and survival Heliothis virescens(Lepidoptera: Noctuidate) on Transgenic Cotton Contaening a Truncated Form of the Delta Endotoxin Gene from Bacillus Thuringiensis. Journal of Economic Entomology, 1993, 86(1): 181-185
    [46] JENKINS J N. Effects of Bacillus thuringiensis genes in cotton resistance to Lepidoterous insects [C]. Proc. Beltwide Cotton Conf., 1992, 606}
    [47] Frederick J. Insect resistant cotton plant [J]. SC/TEC-NOLOGY, 1997, 8.
    [48] 陈松,吴敬音,周宝良,等.转Bt基因棉Bt蛋白表达量的时空变化[J].棉花学报,2000,12(4):189-193
    [49] Carter R, Clower J, Young R. Transgenic Bt cotton. Consultants views and observations. Proc. Belt. Cotton Conf.,1997,pp875
    [50] Kerby T, Wofford T, Presley J. Field performance of transgenic Bt cotton in multiple locations across the belt. Proc. Beltwide Cotton Conf., 1995, pp574-576
    [51] Godoy AS, Moreno ALE, Garcia CEA. Plant growth analysis of transgenic Bt cotton. Proc. Belt. Cotton Conf., 1998, pp1485-1487
    [52] 吴云康,陈德华,段海,等.转基因抗虫棉杂交种生育特性初探[J].江苏农业科学,1997,(2):19-22
    [53] 徐立华,陈祥龙.转基因抗虫棉杂交种生育特性及栽培技术[J].江苏农业科学,1997,(4):27-29
    [54] 郭香墨,丰嵘,刘海涛,等.Bt转基因抗虫棉激素动态变化研究[J].中国棉花,1996,23(12):9-10
    [55] 李根源,郑文俊,刘金海,等.转基因棉R93—1生产试种示范研究初报[J].中国棉花,1996,23(6):19
    [56] 曲辉英,隋玉君,郭三堆.转基因抗虫杂交棉鲁RH-1[J].中国种业,2002,(2):32-35
    [57] 吴德祥,姚霞林,韩文兵,等.沿江棉区转基因抗虫棉高产栽培技术研究[J].安徽农学通报,2003,(1):52-53
    [58] 郭香墨,刘金生.中棉所育成系列转Bt基因抗虫棉[J].棉花学报,1998,10(5):279-280
    [59] 柴新荣,汪诗新,汪礼斌.转基因抗虫棉在生产应用中的缺陷与对策[J].中国棉花,2000,(6):32-34
    [60] 丁双阳,何钟佩,段留生.抗虫棉中棉所30种子萌发过程中生理生化变化的研究[J].中国农业大学学报,1998,3(增刊):52-57
    [61] 董志强,何钟佩,翟学军.DPC处理对棉株侧根组织中激素变化动态的影响[J].华北农学报,2001,5(2):95-99
    [62] 董志强,何钟佩.DPC处理对春棉伤流中激素运输量的动态影响.作物激素生理及化学控制[M].何钟佩 主编 1997:44-47
    [63] Jenkins JN, McCarty Jc Jr, Wofford T.Bt cotton a new era in cotton production. Proc. Beltwide Cotton Conf.,1995, pp171-173
    [64] 刘生荣,李葆来,刘党培,等.转基因抗虫棉DPC化控的产量效应研究[J].作物杂志,2003(4):20-21
    [65] 田晓莉,何钟佩.转Bt基因抗虫棉中棉所30的产量及其构成因素研究[J]. 中国棉花,2000,27(6):9-10
    [66] 薛中立,黄殿成,郑文俊,等.抗虫棉P03—4产量构成与结铃规律初探[J].中国棉花,1996,23(3):13-14
    [67] 顾群,徐辉锋,沈觉康,等.转基因抗虫棉国抗22号特征特性及栽培技术[J].种子科技,2001,(2):118
    [68] 仇学平,顾金祥.转基因杂交抗虫棉田间应用研究[J].中国棉花,2004,31(4):8-9
    [69] 赵海祯,梁哲军,齐宏立,等.转基因抗虫棉生物学特性研究[J].中国棉花,2002,29(10):10-11
    [70] 李振贵,赵忍刚,陈红旗.抗虫棉标准、类型、Bt抗虫棉机理及其丰产优质栽培技术探讨.洪拔曾 主编 冀鲁豫棉花可持续发展战略研究论坛 北京:中国农业出版社,1997:329-333
    [71] 张永山,郭香墨,褚丽,等.转基因抗虫棉产量构成因素的研究[J].棉花学报,2002,14(4):223-226
    [72] 吴德兴,陈德华,杨举善.棉花综合诊断技术[M].江苏科学技术出版社,1996:144-145
    [73] 金津,陈布圣.棉花栽培生理[M].北京:农业出版社,1985
    [74] 吴云康.棉花高产栽培实用新技术[M].江苏:江苏科学技术出版社,1993
    [75] Brenner ML, Cheikh N. The role of hormones in photosynthate and seed filling In: Davies PJ(eds). Plant Hormone: Physiology, Chemistry and Molecular Biology. Dordrecht, Netheriands: Kluwer Academic Publishers, 1995, pp649-690
    [76] Radin JW, Sell CR. Some factors limiting nitrate reduction in developing ovules of cotton. Crop Sci., 1975,15:713-715
    [77] 李秀章,陈祥龙,徐立华,等.氮素营养水平对小麦后移栽棉氮代谢的影响[J].棉花学报,1994,(6):223-228
    [78] 李文才,林振武,汤玉玮.硝酸还原酶的活力研究[J].作物学报,1986,12(2):95-99
    [79] Zhong Chunjiang and Richard J.Hull Interrationships of Nitrate Uptake Reductase, and Nitrogen Use Efficiency in selected Kentucky Bluegrass Cultivars Crop Sci.38:1623-1632 1998
    [80] Mahan James R, Oliver Melvin J, Sherman T. D Nitrate reductase activity during desiccation and rehydration of the desiccation-tolerant moss tortula ruralis Agricultural research service 1996
    [81] Lillo C, 1991. Plant Sci.78:149-154
    [82] Deng M.Mourearx T, Ueydedcer Met al, 1990. Planta, 180:257-261
    [83] Somer D A,Kmo T M, Kleinhofs A et al ,1983. Plant Physiol,72:949
    [84] 李生泉,李锐,冯文新,等.棉苗抗冷性与硝酸还原酶活性变化的研究[J].中国棉花,2004,31(10):14-16
    [85] 田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉中棉所30的碳、氮代谢特征[J].棉花学报,2000,12(4):172-175
    [86] 陈德华,杨长琴,陈源,等.高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究[J].棉花学报,2003,15(5):288-292
    [87] 韩锦峰,史宏志,官春云,等.不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系[J].中国烟草学报,1996,(6):19-27
    [88] 王忠.植物生理学.北京:中国农业出版社主编.1999:107.110
    [89] 宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,(3):230-237
    [90] 刘家尧,王学臣,梁峥.植物基因表达的代谢调控[J].植物通报,1999,16(1):1-10
    [91] 宋松泉,王永锐,傅家瑞.高等植物中硝酸还原酶的研究进展[J].作物杂志,1993,(4):32-35
    [92] 李潮海,刘奎,连艳.鲜玉米碳氮代谢研究进展[J].河南农业大学学报,2000,34(4):318-323
    [93] 李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响[J].植物生态学报,2003,27(2):164-169
    [94] 李存东,董海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J].棉花学报,2003,15(2):87-90
    [95] 董海荣,李存东,李金才.不同形态氮素比例对棉花苗期生长及物质积累的影响[J].河北农业大学学报,2003,26(1):9-13
    [96] 郭培国,李明启.杂交水稻及其亲本光合特性的研究Ⅲ.功能叶片碳代谢中一些酶活性[J].热带亚热带植物学报,1997,5(2):68-73
    [97] 何钟佩,田晓莉,王保民,等.转基因抗虫棉的生育特点及其化控栽培技术体系的研究.中国棉花学会2004年年会论文汇编,2004:194-196
    [98] 董志强,何钟佩,翟学军,等.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力[J].棉花学报,2000,12(3):113-117。
    [99] 田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉产量器官的碳水化合物代谢[J].作物杂志,2003,(2):17-21
    [100] 陈德华.转Bt基因抗虫棉杂交种光合生产和干物质积累的特点研究[J].棉花学报,1998,(1):33-38
    [101] Dehua Chen, Guoyou Ye,Changqin Yang, etc. Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton, Field Crops Research,2004(2)
    [102] 陈德华,聂安全,杨长琴,等.Bt棉毒蛋白表达特征与氮代谢关系及其化学调节的研究[J].中国棉花,2003,30(7):10-12
    [103] 上海市植物生理学会编.现代植物生理学实验指南[M]2004
    [104] 邹琪主编.植物生理学实验指导[M].中国农业出版社 2000
    [105] 何钟佩主编.农作物化学控制实验指导[M].北京农业大学出版社 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700