用户名: 密码: 验证码:
稀土铁氧体/聚丙烯酰胺磁性复合微粒的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性聚合物微粒兼具磁性粒子和聚合物粒子的特性,既可方便地从介质中分离,又可对其表面进行修饰从而赋予其表面多种功能团,被广泛应用于生物医学、细胞学和生物工程等诸多领域。为了充分显示磁性聚合物微粒迅速、简便的分离特点,微粒本身应具有较高的磁响应性和比表面积。本文就是将具有较高磁矩的稀土元素对铁氧体进行掺杂,在W/O反相微乳液体系中制得了稀土铁氧体/聚丙烯酰胺纳米复合微粒。利用FTIR、XRD、TG-DTA、TEM等手段对典型样品进行了表征,讨论了pH值、NaOH加料方式、熟化过程等对产物的影响,用古埃磁天平研究了其磁性能。同时还分别采用磁移动法、比浊法、磁天平法三种方法对稀土铁氧体/聚丙烯酰胺磁性复合微粒的磁响应性进行了测定,讨论了稀土元素种类和用量对复合微粒磁响应性的影响。最后我们还将复合微粒用于磁流变液的制备和粘度性质的研究。
     在由聚乙二醇辛基苯基醚(OP)为表面活性剂、正己醇为助表面活性剂、环己烷为油相和水组成的W/O反相微乳液体系中,以丙烯酰胺为单体、AIBN为引发剂,一步法制得了平均粒径大约在25nm左右的稀土镝铁氧体/聚丙烯酰胺复合微粒。当一次性快速将NaOH溶液加入体系,控制体系pH值为11,产物在80℃下熟化1h后可得磁性较强的微粒。另外,此反应对除氧气防氧化的要求较高。
     对磁性复合微粒磁性能的测试表明复合微粒在外磁场作用下会发生磁化现象,镝铁氧体/聚丙烯酰胺复合微粒属于亚铁磁性材料,其摩尔磁化率高于不掺稀土镝时复合微粒的摩尔磁化率,表明稀土镝的加入可以提高铁氧体的磁性能。水基镝铁氧体/聚丙烯酰胺磁流体在低磁场范围内属于顺磁性材料,磁场变强后磁化达到磁化饱和状态,测定了其饱和磁化强度M_s。
     通过对复合微粒磁响应性的测定发现,由于磁移动法、比浊法自身的特点,这两种方法不适宜用于本文制得的磁性复合微粒磁响应性的测定。相比较而言,磁天平法对测定粒径较小、磁含量较低的复合粒子的磁响应性更有优势,更适宜
Magnetic polymer microparticle combines the property of magnetic particle with that of macromolecule particle. It not only can be separated from the medium easily, but also can be surface-modified in order that the surface of magnetic microparticle was endued with functional groups. So it has broad application in the fields of biomedicine, cytology and biology engineering, etc. The microparticle must possess high magnetic responsibility and specific surface area, so that magnetic separation is quick and convenient. In this paper ferrite was doped with rare earth elements of great magnetic moment and rare earth ferrite/polyacrylamide magnetic composite microparticles were prepared by one-step method in a single inverse microemulsion. The typical composite microparticles were charactered by FTIR, XRD, TEM and TG-DTA. The influencing factors, such as pH value, the charging mode of sodium hydroxide, temperature, were discussed respectively. Magnetic properties of composite microparticles were studied by Gouy magnetic balance. At the same time magnetic motion method, turbidimetric method, magnetic balance method were used to determine and study the magnetic responsibility of rare earth ferrite/polyacrylamide composite microparticles. Then the effect of the species and consumption of rare earth on magnetic responsibility were discussed. At last, the composite microparticles were used for preparation of magnetorheological fluid and research of viscosity property.Dysprosium ferrite / PAM composite microparticles with an average particle size about 25nm were prepared by inverse microemulsion system of polyethylene glycol octylphenyl ether, n-hexyl alcohol, cyclohexane and water phase, using acrylamide as monomer and AIBN as initiator. In the process of the preparation of Dy_xFe_3-xO_4/PAM composite microparticles, we find that Dy_xFe_3-xO_4/PAM nano-composite microparticles could be obtained with the condition of adding NaOH solution quickly at once into reaction system, changing pH to 11 and aging for 1h at 80 °C. We also find that deoxidize and preventing oxidizing is important to this reaction.
    The results of testing magnetic property of composite particles indicate that composite particles can be magnetized under exterior magnetic field and composite particles are ferrimagnetism material. Bulk magnetic susceptibility of DyxFe3.xO4/PAM is higher than that of FeaO/j/PAM, which indicates that the addition of dysprosium can improve magnetic property of ferrite. At the same time, magnetic properties of water-based dysprosium ferrite/PAM magnetic fluid was investigated. In the downfield the magnetic fluid is paramagnetism material. The magnetic fluid reaches the state of magnetization saturation in the high magnetic field and saturation magnetization were measured.Research of magnetic responsibility of rare earth ferrite/polyacrylamide indicates that the magnetic motion method and turbidimetric method aren't applicable to the determination of magnetic responsibility of composite particles prepared in this paper. Magnetic balance method is more suitable to the particles with smaller diameters and low magnetic content, which can be used to measure magnetic responsibility of composite microparticles prepared in this paper. Magnetic responsibility of composite microparticles doped Dy, Er, Tb or Gd rises up. The changing tendency of magnetic responsibility is similar to that of magnetic moment of rare earth ions. Magnetic responsibility of dysprosium ferrite/PAM composite microparticles increases at first and decreases later with growth of dysprosium content. The microparticles show the strongest magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.DyxFe3.xO4/PAM magnetic composite microparticles were dispersed in silicon oil and magnetorheological fluid (MRF) was prepared. Viscosity behavior of magnetorheological fluid under exterior magnetic field was investigated and the influencing factors, such as rotate speed, magnetic field strength, content of magnetic particles and temperature, were also discussed respectively. T
引文
1.白春礼,纳米科学技术,昆明:云南科学技术出版社,1995
    2.张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,3
    3.张池明,化学通报,1993,(8):20-23
    4.古宏晨,徐华蕊,化工进展,1999,(4):5-7
    5.孙志刚,胡黎明,化工进展,1997,(2):21-24
    6.张志焜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000
    7.李钟华,张秀媚,杨亭阁,化工进展,1992,(2):20-22
    8.孙继红,张晔,范文洁等,化学进展,1999,11(1):80-85
    9.马剑华,温州大学学报,2002,(2):79-82
    10.梁起等,河南大学学报,1997,(6):56-58
    11.严东生等,无机材料学报,1995,3(1):1
    12.段波等,材料工程,1994,(6):5
    13.丁星兆等,材料导报,1997,11(4):1
    14.曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001,8,p13
    15.顾宁,付德刚,张海黔等,纳米技术及应用,北京:人民邮电出版社,2002,4
    16.李泉,曾广赋,席时权,化学通报,1995,(6):29~34
    17.张玉龙,李长德主编,纳米技术与纳米塑料,北京:中国轻工业出版社,2002,1
    18.刘颖,王建华,高伟,功能材料,1993,24(1):20-24
    19.丁明,曾恒兴,无机材料学报,1998,13(4):619-624
    20.李学慧,吴业,刘宗明,化学世界,1998,(1):15-17
    21.张茂润,功能材料,1996,27(4):328-331
    22.康鸿业,王允军,施展等,高等学校化学学报,1991,12(5):684-685
    23.邱广明,孙宗华,化学试剂,1993,15(4):234
    24. X. P. Qiu, Chinese J. Chem., 2000, 18(6): 834-837
    25. L. Vayssieres, C. Chanciaac, E. Tronc, J. P. Jolivet, J. Colloid Interf. Sci., 1998, 205: 205~212
    26. S. Neveu, A. Bee, M. Robineau, D. Talbot, J. Colloid Interf. Sci., 2002, 255: 293-298
    27. X. B. Ding, Z. H. Sun, G. X. Wan, Y. Y. Jiang, React. Funct. Polym., 1998, 38: 11-15
    28. T. Sugimoto, E. Matijevic, J. Colloidlnterf. Sci., 1980, 74(1): 227-243
    29. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, B. Chu, Langmuir, 1999, 15(6): 1945-1951
    30. L. Liz, M. A. Lopez-Quintela, J. Mira, J. Rivas, J. Mater. Sci., 1994, 29: 3797-3801
    31. K. Byrappa, Masahiro Yoshimura, Handbook of Hydrothermal Technology-Technology for Crystal Growth and Materials Processing, Noyes Publication/William Andrew Publishing, LLC, 2001
    32. Chen, D. and Xu, R., Mat. Res. Bull. 1998, 33: 1015-1021
    33. Hirano, S. and Somiya, S., J. Crystal Growth , 1976, 35: 273-278
    34. McGarvey, G. B. and Owen, D. G., J. Mat. Sci., 1996, 31: 49-53
    35. R. Sprycha, H. T. Oyama, A. Zelenev, E. Matijevic. Colloid Polym. Sci., 1995, 273: 693
    36. R. Partch, S. F. Gangolli, E. Matijevic. J. Colloid Interface Sci., 1991, 144: 27
    37. S. M. Marinakos, L. C. Brousseau, A. Jones, D. L. Feldheim, Chem. Mater., 1998, 10: 1214
    38.张宇,材料导报,2000,14(11):67
    39. Oyama H. T., Sprycha R., Xie Y. et al. J. Colloid Interface Sci., 1993, 160: 298
    40. Sprycha R., Oyama H. T., Zelenev A. et al. Colloid Polymer Science, 1995, 273: 693
    41. Partch R, Gangolli S G, Matijevic E, et al. J. Colloid Interface Sci., 1991, 144: 27
    42. Marinakos S M, Brousseau L C., Jones A. et al. Chem. Mater., 1998, 10: 1214
    43.易昌凤,徐祖顺,程时远等,材料导报,2000,14(1):24
    44. R. Roy, S. Komarneri, D. M. Roy, Mater. Res. Soc. Symp. Proc., 1984, 32: 347
    45. D. M. Roy, R. Roy, Mater. Res. Bill., 1984, 19: 169
    46. D. W. Hoffman, R. Roy, S. Komameri, J. Am. Ceram. Soc. 1984, 67: 468
    47. Godovsky D. Y. Advances in Polymer Science, 1995: 119
    48.宋国君,舒文艺,材料导报,1996,(4):57
    49. Judeinstein P., Sanchez C. J. Mater. Chem., 1996, 6: 511
    50.夏和生,王琪,高分子材料科学与工程,2001,17(4):1
    51.冯林,宋延林,万梅香,科学通报,2001,46(16):1321
    52.查刘生,高海峰,杨武利等,高分子通报,2002,3:24
    53. Bahar T., Cellibi S. S. J. Appl. Polym. Sci., 1999, 72: 69
    54. Yen SPS, Rembaum A., Landel R. F. USP4, 285, 819, 1981
    55. CuyperMD, JonianM. Langmuir, 1990, 7: 647
    56. Gupta P. K., Hong C. T. Int. J. Pharm., 1998, 43: 16
    57.李民勤,徐慧显,何炳林,高等学校化学学报,1996,17(1):147
    58.安小宁,苏致兴,兰州大学学报(自然科学版),2001,37(2):100
    59.夏和生,王琪,化学研究与应用,2002,14(2):127
    60. Ugelstad J, Ellingsen T, Berge A, et al. USP 4, 774, 265, 1998
    61. Ramos J. Millan A. Palacio F., Polymer, 2000, 41(24): 8461
    62. Rabelo D, Lima ECD, Barbosa DP, et al. J. Magn. Magn. Mater. 2002, 252: 13
    63. Godvsky D Yu, Varfolomeer A V, Efremova G D, et al. Adv. Mater. Opt. Electron. 1999, 9: 87
    64.谢钢,张秋禹,罗正平等,高分子学报,2002,(3):314~318
    65. YLee, JRho, BJung. J. Appl. Polym. Sci., 2003, 89(8): 2058~2067
    66.罗正平,张秋禹,张军平等,功能高分子学报,2002,15(2):147~151
    67.程彬,朱玉瑞,江万权等,化学物理学报,2000,13(3):359~362
    68. J. G. Deng, C. L. He, Y. X. Pang, et al. Synthetic Metals, 2003, 139: 295~301
    69.邓建国,贺传兰,龙新平等,高分子学报,2003,(3):393~397
    70. S. Santra, R. Tapec, N. Theodoropoulou, et al. Langmuir, 2001, 17: 2900~2906
    71.何晓晓,王柯敏,谭蔚泓,高等学校化学学报,2003,24(1):40~42
    72.答鸿,朱以华,无机材料学报,2002,17(4):867~870
    73. Jhunu Chatterjee, Yousef Haik, etal. Journal of Magnetism and Magnetic Materials, 2001, 225: 21~29
    74. Briscoe, Journal of Immunology, 1997, (159): 3247~3251
    75. Ugelstad J J. Immunol Meth, 1982, (54): 341~347
    76. Sinan Akgo, Yasemin Ka, etal. Food Chemistry, 2001, 74: 281~288
    77.邱广亮,邱广明,李咏兰等,广州化工,2000,28(4):24
    78. Cuyper MD, Jonian M., Langmuir, 1990, 7: 64
    79. Sucholeiki. Bohuslav Jena Spa, Rittich, novaA. Journal of Chromatography B: 2002, (774): 25-31
    80.惠旭辉,高立达,何能前,四川医学,2001,22(10):928-929
    81. Cordula Grutter, Sandra Rudershansen, Joachim Teller. Journal of Magnetism and Magnetic Meterials, 2001, (225): 1-7
    82. Sinan A, Yasemin., Food Chemistry, 2001, 74(3): 281
    83.张密林,王君,景晓燕等,21世纪生物与化工学术研讨会论文集,云南:云南科技出版,2000.1
    84. Jurgen Oster, Jeffrey Parker, et al. Journal of Magnetism and Materials, 2001, 225(2): 145~150
    85.刘光华主编,稀土固体材料学,北京:机构工业出版社,1997,p40
    86.郭睿倩,李洪桂,孙培梅等,功能材料,2001,32(6):598-599
    87.郭秀盈,颜秀茹,崔晓亮等,无机化学学报,2004,20(8):910-914
    88.庄稼,迟燕华,石军宁等,中国稀土学报,2002,20(4):324-326
    89.朱传征,沈骚,徐超等,华东师范大学学报(自然科学版),2000,(1):68-73
    90.王丁林,沈骎,胡先罗等,华东师范大学学报(自然科学版),2001,(1):71-76
    91.曾桓兴,王弘,沈瑜生等,稀土,1989,(5):5-8
    92.曾桓兴,任福民,中国稀土学报,1993,11(3):228-232
    93. S.E. Jacobo, W.G. Fano, A.C. Razzitte, Physica B, 2002, 320(2): 261~263
    94. Puneet Sharma, Amitabh Verma, R.K. Sidhu, et al. Journal of Alloys and Compounds, 2003, 361(2): 257~264
    95. Neel L. Ann de Phys. 1948, (3): 137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700