用户名: 密码: 验证码:
连续铸钢结晶器温度场的实验研究及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续铸造在金属材料生产中占有举足轻重的地位,连铸技术的水平成为衡量钢铁工业现代化程度的重要标志。结晶器是连铸机的“心脏”,连铸技术的发展离不开结晶器技术的发展。铸件凝固过程数值模拟是计算机在铸造生产中应用的最核心内容,数值模拟技术代替部分传统的经验性实验工作,一方面提高生产效率、降低成本和能耗,另一方面减少环境污染,是适应可持续发展战略的研究方向。结晶器的传热和变形影响铸坯的表面及内部质量,而且其使用寿命直接影响铸坯的产量。因此,本文以连铸结晶器的温度场为中心,将实验与数值模拟相结合,展开了如下研究:
     设计了模拟结晶器工作过程的动态及静态水流作用下结晶器内壁界面温度分布实验,得到了结晶器内壁边界温度分布规律。
     建立了结晶器边界等效导热系数模型,使连续铸钢过程中,包括结晶器在内的连铸钢坯温度场的数值模拟能够进行。
     进行了圆柱拉坯实验,选用低熔点的锡铅合金模拟钢熔体。铸坯直径30mm,拉坯速度3mm/s,冷却水流量O.08m~3/h。实验结果与数值模拟结果基本符合,验证了数值模拟软件的可行性。
     为了系统研究铸件与铸型的边界传热,对普通铸件的凝固进行了测温实验。实验测得了砂型和会属型冷却条件下,相同材质铸件凝固过程中的边界温度分布及各自对应的凝固组织。
     自行编写VC++计算程序,对连铸钢小方坯及其结晶器的温度场进行数值模拟,得到了温度场的分布规律。模拟计算了工艺参数对结晶器温度场的影响,在连铸过程中,拉坯速度、冷却水流量及结晶器壁厚是温度场的主要影响因素。液柱高度、浇注温度对温度场的影响程度较小。
Continuous casting technique is very important in the production of metallic material. The level of continuous casting technique has been the standard of modernization degree of iron and steel industry. Mold is the heart of continuous casting machine. The continuous casting technique develops along with the development of mold technique. The numerical simulation of solidification process is the core of application of computer in cast production. Numerical simulation instead of part of the conventional experience experiments can not only increase product efficiency and decrease cost and energy sources, but also lessen environment pollution. The heat transfer and thermal distortion of mold affects the surface and inside quality of billets, and the employ life of mold has effect on billets yield. Hence the paper makes the mold temperature field to be the center and performs the following research integrating the simulation and experiments.Experiments of dynamic and static for mold working process were designed and performed, the measure results indicates that the boundary temperature of mold wall always approaches that of cooling-water under the cooperation of molten metal and cooling-water.The mathematical model of equivalent thermal conductivity coefficient was built, which made the numerical simulation of billet including mold possibly during the continuous casting of steel.The experiments of column continuous casting were performed. The metal is Sn-Pb Alloy, and column diameter is 30mm, and casting speed is 3mm/s, and cooling water flux is 0.08m3/h. The experiments results agree with the calculation, which validates the feasibility of numerical simulation software.In order to make the study of boundary heat-transfer for cast and mold completely, the paper pursued experiments for common cast. The experiments got the rules of temperature distribution and solidification structure under different cooling boundary of sand mold and metal mold.VC++ programs were written to calculate the temperature field of mold for billet continuous casting of steel. The calculations got the distribution rules of temperature field for mold, and the effects of techniques parameters on temperature field were also calculated. During the continuous casting process, casting speed, cooling-water flux and mold wall thickness are the main factors. And the effects of metal level and pouring temperature are not so clear.
引文
[1] 寇宏超,李金山,张丰收等.钢的电磁铸造及其研究进展.[J]铸造技术,2001,3:46-48.
    [2] 干勇,仇圣桃.萧泽强.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001:8-9.
    [3] 蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [4] 古田政博:铁钢,1987,3:403
    [5] 高革.轻合金加工技术[M].1989,6:26.
    [6] J. C. Weber, R. Sautebin: Light Metals, 1986:869
    [7] D. E. Tyler. Journal of Metals, 1985, 37 (9): 51
    [8] 任吉堂.朱立光.王书恒.连铸连轧理论与实践[M].北京:冶金工业出版社.2002,3-4.
    [9] C.H.Moon and S.M.Hwang. Ironmaking and Steelmaking 2003, 30 (1).
    [10] Faramarz ZARANDI and Steve YUE.ISIJ International, 2004, 44(10): 1705-1713.
    [11] 干勇.薄板坯连铸连轧生产技术若干问题[J].钢铁,2004,39(8):24-33.
    [12] 陈伯瑜.小方坯连铸机多炉连浇的生产实践[J].钢铁.2004,39(9):24-27.
    [13] 尹合壁.姚曼,罗庆梅等.连铸坯表面裂纹预测研究的现状[J].钢铁研究学报,2004,16(1):1-5.
    [14] Michel BELLET, Alban HEINRICH. ISIJ International, 2004, 44(10): 1686-1695.
    [15] 仲增墉.中国薄板坯连铸连轧技术的现状和发展[J].钢铁,2003,38(7):4-7.
    [16] 殷瑞玉.关于中国薄板坯连铸连轧的工艺装备优化和投资问题[J].钢铁.2003,8:1-9
    [17] 柳百成.铸件凝固过程的宏观及微观模拟仿真研究进展[J].中国工程科学,2000,2(9):29-37
    [18] 荆涛.凝固过程数值模拟[M].电子工业出版社,2002.
    [19] 王君卿.国内外铸造工艺过程计算机数值模拟技术和铸造工艺CAD发展概况[A].第八届全国铸造会议论文集.1992,96-107。
    [20] 郭可切,金俊泽.大型铸件凝固过程的数字模拟[J].大连工学院学报.1980,19(2):1-17
    [21] 金俊泽,郭可訒.铸仆冒口尺寸的优化设计[J],大连工学院学报.1980,(1):89-97
    [22] 金俊泽,郑贤淑,郭可訒等.连铸钢坯凝固进程的数值模拟[J].钢铁,1985,20(5):19-27.
    [23] 金俊泽.郑贤淑,郭可訒等。铸什凝固进程的三维数值模拟[J].钢铁.1988,(2):20-26.
    [24] J. G. Hensel, J. Keverian. Calculating Solidification Patters in sand Cast Steel Cylinders by Digital computer. AFS Transaction, 1954, 666-676
    [25] R. D. Pehilke et al. Numerical Simulation of Solidification. Monograph Published by AFS IL. 1976: 232
    [26] 大中逸雄.计算机传热凝固解析入门—铸造过程中的应用[M].北京:机械工业出版社.1988:53-123
    [27] Kramer B M. The NGM Project [A]. A Key Element on the Government Manufacturing Infrastructure Strategy, NSF[R]. USA, 1996.
    [2
    
    [28] Thomas B G, Becker mann C. Proceedings of International Conference on Modeling of Casting, Welding and Advanced Solidification Processes Ⅷ[C]. San Diego, USA TMS Publication, 1998
    [29] I. V. Samarasekera and J. K Brimacombe. The Thermal Field in Continuous Casting Mould. Canadian Metallurgical Quarterly, 1979, Vol. 18: 251-266.
    [30] 张富强,王军,梁祥远.中薄板坯高拉速连铸结晶器平均热流研究[J].钢铁,2002,(12):19-20
    [31] C. A. M. Pinheiro, I. V. Samarasekera, J. K. Brimacombe, et al. Mould heat transfer and continuously cast billet quality with mould flux lubrication Part 1 Mould heat transfer, lronmaking and Steeimaking, 2000, 27 (1): 37-54.
    [32] C. Chow, I. V. Samarasekera, B. N. Walker, et al. High speed continuous casting of steel billets Part2: Mould heat transfer and mould design. Ironmaking and Steelmaking, 2002, 29(1) : 61-69.
    [33] 张晨,汪钺强,蔡得祥等.连铸结晶器综合传热系数的定量分析[J].钢铁研究学报,2000,12(2):21-24.
    [34] Yao MAN, Yin HEBl, Fang DACHENG. ISIJ International, 2004, 44 (10): 1696-1704
    [35] 张炯明,张立,王新华等.板坯连铸结晶器热流量分布的研究[J].金属学报,2003,39(12):1285-1290.
    [36] I. V. Samarasekera and J. K. Brimaeombe. Thermoal and Mechanical Behaviour of Continuous Casting Billet Moulds. CONTINUOUS CASTING(Volume Two). 1984: 59-72.
    [37] J. K. Brimacombe, E. B. Hawbolt and F. Weinberg. CONTINUOUS CASTING(Volume Two). 1984: 73-84.
    [38] 卢盛意.连铸坯质量(第2版)[M].北京:冶金工业业山版社,2000:11
    [39] Samarasekera I V, Brimacombe J K, Wilder K. The pursuit of steel billet quality. Iron and Steelmaker, 1994: (3): 53
    [40] 邹俊苏,刘喜海,张喜娥.连铸结晶器铜板温度场数值模拟研究[J].钢铁研究,2002,(5):5-6
    [41] 李占才,赵敏.高拉速板坯连铸机结晶器结构优化研究与应用[J].重型机械,2001(2):13-15
    [42] 任忠鸣,邓康.将国昌.软接触结晶器电磁连铸技术的发展[J].钢铁研究学报,2002,14(1):58-63
    [43] 郑贤淑,王一成,金俊泽.电磁铸造人板坯半连铸过程温度场的数值模拟[J].金属学报,1999,35(8):861-864
    [44] 杨全,张真.金属凝固与铸造过程数值模拟[M].杭州:浙江大学出版社,1996.
    [45] 陈海青,李华基,曹阳.铸件凝闹过程数值模拟[M].重庆:重庆大学出版社,1991.
    [46] M.N.奥齐西克.俞昌铭译.热传导[M].北京:高等教育出版社,1983.
    [47] 胡汉起.金属凝固原理[M].北京:机械工业出版社,1991:19
    [48] Bakshi I. A et al. Ironmaking and steelmaking, 1993, 20(1): 54-74.
    [49] Mahapatra R Bet al. MeT. Trans. 1991: (22B)861-888
    
    [50] Brimaconmbe J K. Steeimaking Conference proceedings, 1993: 3-15
    [51] 蔡开科.浇铸与凝固[M].北京:冶金工业山版社,1987:83-84
    [52] 金百刚,王强,邓安元等.软接触电磁连铸方坯结晶器的传热分析[J].铸造,2004,53(2):122-125
    [53] 傅广瑞.采用数值模拟与热/力模拟方法建立连铸过程喷水控制模型的研究[D].(博士学位论文).大连:大连理工大学,1997.
    [54] 吴树森.材料加工冶金传输原理[M].北京:机械工业出版社,2001:174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700