用户名: 密码: 验证码:
光敏色素B调控的一个水稻NBS-LRR基因的表达和功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用水稻基因芯片比较野生型、phyA和phyB突变体受连续红光照射后的基因表达图谱,从中筛选到一个受phyB介导的红光信号特异诱导的、编码NBS-LRR类蛋白的基因,命名为PB-LRR (phyB-regulated NBS-LRR)。
     为了揭示PB-LRR基因在水稻生长发育中作用,本研究首先对该基因表达的器官特异性、对不同激素的应答反应进行了分析。结果表明,PB-LRR基因在叶中表达水平最高,在茎中最低。光对PB-LRR基因表达的诱导是由phyB调控的,与phyA无关。此外PB-LRR基因的表达受外源ABA的抑制,并且受环境因子的调控;不受PEG处理的影响,但很可能与光周期有关。本研究将构建好的PB-LRR启动区:GUS植物表达载体并转化至野生型和phyB突变体中,GUS染色结果表明,在phyB突变体转基因植株中的GUS活性明显低于野生型,而且GUS活性主要出现在叶片上部。这些结果表明PB-LRR基因的表达不仅受phyB介导的光信号调控,而且受发育调控。
     为了进一步了解PB-LRR基因的功能,本研究通过农杆菌愈伤组织侵染法成功培育出了该基因的过量表达和缺失表达的转基因株系。对生长14d的两种转基因株系的幼苗进行表型分析发现过量表达的株系主根较野生型和缺失表达的株系长,但地上部分各株系的差异不明显。由此推测该基因的过量表达可以使主根更为发达。另外,干旱处理后,PB-LRR基因的缺失表达株系的耐旱性比野生型和过量表达株系明显要差,野生型和过量表达株系耐旱性相当。这一结果说明,该基因与水稻的干旱胁迫耐性相关。
     生物信息学分析发现,PB-LRR基因属于CC-NBS-LRR类基因,目前报道的这类基因多数为抗性基因,因而推测其与水稻的抗病性相关。本研究中利用Western blotting对茉莉酸(JA)和水杨酸(SA)处理后的野生型和过量表达的株系进行了PR-1蛋白表达水平的分析,并未发现明显差异,说明PB-LRR基因可能不参与JA、SA依赖的PR-1蛋白参与的抗病信号途径。
     本研究为进一步分析PB-LRR基因在phyB介导的光反应和水稻生长发育中的作用奠定了基础。
We compared gene profiles among wild-type, phyA and phyB mutants grown under continuous red light or in the dark. One gene, which encodes NBS-LRR family protein, is specifically up-regulated by red light perceived by phyB. We named this gene PB-LRR (phyB-regulated NBS-LRR).
     To access the biological functions of PB-LRR gene in rice growth, we analyzed the organ-specificity of PB-LRR expression as well as effects of exogenous hormones on PB-LRR expression. The level of PB-LRR transcripts was highest in leaf and lowest in shoot. Our results showed that light-induced expression of PB-LRR gene was attributed to phyB, not phyA. Moreover, expression of PB-LRR gene was inhibited by exogenous ABA treatment, and also regulated by environmental factors. The level of PB-LRR transcripts was not affected by PEG but probably influenced by photoperiod. The expression cassette of putative promoter region of PB-LRR and GUS (ProPB-LRR:GUS) was constructed and introduced into wild-type (WT) and phyB mutant, respectively. GUS activities were obviously detected in upper part of leaves in the WT background, but only weakly detected in the phyB mutant background. These results demonstrate that PB-LRR gene is not only regulated by phyB-mediated light signals but also by leaf development in rice.
     In order to analyze the PB-LRR role in rice in detail, we produced two kinds of transgenic lines:PB-LRR OE/WT (overexpression) and PB-LRR RNAi/WT (RNA interference) by Agroinfection method. Comparison of phenotypes of 14-day-old wild-type and PB-LRR transgenic seedlings revealed that the seminal roots of PB-LRR OE/WT were significantly longer than wild-type and PB-LRR RNAi/WT. No obvious difference was observed in the above-ground parts of wild type and PB-LRR transgenic lines. In addition, PB-LRR RNAi/WT showed obvious increased sensitivity to drought stress. The drought tolerance of PB-LRR OE/WT lines was similar to wild-type plants. These results suggest that PB-LRR gene is involved in regulating the rice drought tolerance.
     Bioinformatics analysis revealed that PB-LRR gene belonged to CC-NBS-LRR gene family. In this family, most members have been reported to be resistance gene. Thus, it was deduced that PB-LRR gene probably play a role in rice disease resitance. However, the PR-1 protein levels have no difference in wild-type and PB-LRR OE/WT leaves treated with exogenous JA and SA using western blotting analysis. These results suggest that the deduced disease resistance of PB-LRR has no relationship with expression of PR-1 proteins induced by either JA- or SA- defense pathway.
     Our results underlie the knowledge for further understanding the roles of PB-LRR in phyB-mediated signaling, disease resistance and drought tolerance in rice.
引文
[1]Mathews S. Phytochrome evolution in green and nongreen plants [J]. J Hered,2005,96:197-204.
    [2]Nagy F, Schafer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants [J]. Annu Rev Plant Biol,2002,53:329-355.
    [3]Casal JJ. Phytochromes, cryptochromes, phototropin:photoreceptor interactions in plants [J]. Photochem Photobiol,2000,71:1-11.
    [4]Briggs WR, Christie JM. Phototropins 1 and 2:versatile plant blue-light receptors [J]. Trends Plant Sci,2002,7:204-210.
    [5]Ulm R, Nagy F. Signaling and gene regulation in response to ultraviolet light [J]. Curr Opin Plant Biol,2005,8:477-482.
    [6]Quail PH. Photosensory perception and signaling in plant cells:new paradigms [J]? Curr Opin Cell Biol,2002,14:180-188.
    [7]Nagatani A, Reed JW, Chory J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A [J]. Plant Physiol,1993,102:269-277.
    [8]Parks BM, Quail PH. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A [J]. Plant Cell,1993,5:39-48.
    [9]Reed JW, Nagpal P, Poole DS, et al. Mutations in the gene for the red-far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development[J]. Plant Cell,1993,5:147-157.
    [10]Devlin PF, Patel SR, Whitelam GC. Phytochrome E influences internode elongation and flowering time in Arabidopsis [J].Plant Cell,1998,10:1479-1487.
    [11]Devlin PF, Robson PR, Patel SR, et al. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time [J]. Plant Physiol,1999,119: 909-915.
    [12]刘圈炜,何云,齐胜利,等.光敏色素研究进展[J].中国农学通报,2005,2:237-241.
    [13]Quail P H. An emerging map of the phytochromes [J]. Plant Cell Environ,1997,20:657-665.
    [14]Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus [J].Nature,2003,424:571-574.
    [15]Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins [J]. Annu. Rev. Plant Biol,2008,59:281-311.
    [16]Lincoln T, Eduarclo Z. Plant Physiology [M].Sunderland:Sinauer Associates,2002,Inc. pp. 376-376.
    [17]Andel F, Lagarias JC, Mathies RA. Resonance Raman analysis of chromophore structure in the Lumi-R photoproduct of phytochrome [J]. Biochem,1996,35:15997-16008.
    [18]Gu X, Chen Z, Zhu Y. Phytochrome and photoregulation [J]. Avta Bot Sin,1997,39:675-681.
    [19]Kendrick RE, Kronenberg G. Photomorphogenesis in Plants [M],2nd edn. Dordreeht:Kluwer,1994, pp.707-707.
    [20]顾建伟,刘婧,薛彦久,等.光敏色素在水稻生长发育中的作用[J].中国水稻科学,2011,25:130-135.
    [22]王静,王艇.高等植物光敏色素的分子结构、生理功能和进化特征[J].植物学通报,2007,24:649-658.
    [23]Deng XW, Matsici M, Wei N, et al. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motify and a G beta homologous domain [J]. Cell,1992,71:791-801.
    [24]Van VE. Leaf expansion—an integration plant behaviour [J]. Plant J,1998,3:583-590.
    [25]Keara AF, Garry CW (1999). Phytochromes and shade-avoidance responses in plants [J]. Plant Cell Envion,1999,22:1463-1473.
    [26]Paul FD, Paul RHR, Samita RP, et al. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time [J]. Plant Physiol,1999,119: 909-916.
    [27]Quail PH. Phytochrome photosensory signaling networks [J]. Nat Rev Mol Cell Biol,2002,3: 85-93.
    [28]Nagatani A, Reed JW, Chory J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A [J]. Plant Physiol,1993,102:269-277.
    [29]Reed JW, Nagatani A, Elich TD, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development [J]. Plant Physiol,1994,104:1139-1149.
    [30]Monte E, Alonso JM, Ecker JR,et al. Isolation and characterization ofphyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways [J]. Plant Cell,2003,15: 1962-1980.
    [31]Tong Z, Wang T, Xu Y. Evidence for involvement of phytochrome regulation in male-sterlity of Oryza sativa L [J]. Photochem Photobiol,1990,52:161-164.
    [32]刘明,赵琪,王小菁等.植物的光受体及其调控机制的研究[J].生物学通报,2005,40:10-12.
    [33]Hilhorst HWM, Karssen CM. Dual effect of light on the gibberellin- and nitrate-stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana [J]. Plant Physiol,1998,86: 591-597.
    [34]Yang YY, Nagatani A, Zhao YJ, et al. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana [J]. Plant Cell Physiol,1995,36: 1205-1211.
    [35]Nick P, Furuya M. Phytochrome dependent decrease of gibberellin sensitivity [J]. Plant Growth Regul,1993,12:195-206.
    [36]赵玉锦,童哲,陈华君,等.内源植物激素与光敏核不育水稻农垦58S育性的关系[J].植物学报,1996,38:936-941.
    [37]Goeschl JD, Pratt HK, Bonner BA. An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings [J]. Plant Physiol,1967,42,1077-1080.
    [38]Vangronsveld J, Clijsters H, Van PM. Phytochrome controlled ethylene biosynthesis of intact etiolated bean seedlings [J]. Planta,1988,174:19-24.
    [39]Piringer AA, Heinze PH. Effect of light on the formation of a pigment in the tomato fruit cuticle [J]. Plant Physiol,1954,29:467-472.
    [40]M. Ouedraogo, C. Hubac. Effect of Far Red Light on Drought Resistance of Cotton [J]. Plant Cell Physiol,1982,23:1297-1303.
    [41]Genoud T, Millar AJ, Nishizawa N, et al. An Arabidopsis mutant hypersensitive to red and far-red light signals [J]. Plant Cell,1998,10:889-904.
    [42]Genoud T, Buchala AJ, Chua NH,et al. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis [J]. Plant J,2002,31:87-95.
    [43]Faigon-Soverna A, Harmon FG, Storani L, et al. A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development [J]. Plant Cell,2006, 18:2919-2928.
    [44]王友红,张鹏,陈建群.植物抗病基因及其作用机理[J].植物学通报,2005,22:92-99.
    [45]Tao Y, Yuan FH, Leister RT,et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2 [J]. The Plant Cell,2000,12:2541-2554.
    [46]Kajava AV. Structural diversity of leucine-rich repeat proteins [J]. Journal of Molecular Biology, 1998,277:519-527.
    [47]Evdokimov AG, Anderson DE, Routzahn KM, et al. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM:a leucine-rich repeat protein with the shortest repeating unit [J]. Journal of Molecular Biology,2001,312:807-821.
    [48]Parniske M, Hammond-Kosack KE, Golstein C, et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato [J]. Cell, 1997,91:821-832.
    [49]Warren RF, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPP5 partially suppresses multiple bacterial and downy mildew resistance genes [J]. The Plant Cell,1998,10:1439-1452.
    [50]Pan Q, Wendel J, Fluhr R.Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes [J]. J. Mol. Evo.,2000,50:203-213.
    [51]Torii KU, McNellis TW, Deng XW. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development [J]. EMBO,1998,17: 5577-5587.
    [52]季军,杨四海,田大成.水稻基因组中抗病基因正选择方式及基因转换的研究[J].中国农业科学,2007,40:1856-1863.
    [53]Yoshimura S, Yamanouchi U, Katayose Y, et al. Expressionof Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation [J]. Proc Natl Acad Sci USA,1998,95: 1663-1668.
    [54]Wang ZX, Yamanouchi U, Katayose Y, et al. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences [J]. Plant Mol Biol,2001,47:653-661.
    [55]李婵娟,杨世湖,武亮,等.pib基因启动子及其诱导启动性初探[J].遗传,2006,28:689~694.
    [56]杨勤忠,林菲,冯淑杰,等.水稻稻瘟病抗性基因的分子定位及克隆研究进展[J].中国农业科学,2009,42:1601-1615.
    [57]Xian-Zhi Xie, Yan-Jiu Xue, Jin-Jun Zhou, et al. Phytochromes Regulate SA and JA Signaling Pathways in Rice and Are Required for Developmentally Controlled Resistance to Magnaporthe grisea [J].Mol.Plant,2011, doi:10.1093/mp/ssr005.
    [58]Warren RF, Henk A, Mowery P, et al.A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J]. Plant Cell,1998,10:1439~1450.
    [59]Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana:a leucine—rich repeat class of plant disease resistance genes [J]. Science,1994,265:1856—1860.
    [60]Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice [J]. Plant Cell,2005,17:3311-3325.
    [61]Mei C, Qi M, Sheng G,et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection [J]. Mol Plant Microbe Interact,2006,19:1127-1137.
    [62]Qiu D, Xiao J, Ding X, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling [J]. Mol Plant Microbe Interact,2007,20:492-499.
    [63]Shimono M, Sugano S, Nakayama A,et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance [J]. Plant Cell,2007,19:2064-2076.
    [64]Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions [J]. Curr.Opin. Plant Biol,2005,8:409-414.
    [65]Yoshida S, Forno DA, Cock JK, et al. Laboratory manual for physiological studies of rice [M]. Los Banos, Laguna:International Rice Research Institute (IRRI).1976, pp:61-66.
    [66]Jwa NS,Agrawal GK,Rakwal R,et al.Molecular cloning and characterization of a novel jasmonate inducible pathogenesis—related class 10 protein gene,JIOsPRIO,from rice(Oryza sativa L.) seedling leaves[J].Biochem Biophys Res Commun,2001,286:973-983.
    [67]A Chini, JJ Grant, M Seki, et al. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1[J]. Plant J,2004, 38:810-822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700