用户名: 密码: 验证码:
索穹顶结构风振响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
索穹顶结构是一种受力性能良好、外形美观多样的张力结构体系,其受力构件有索、膜和少数刚性立杆。该结构的自振频率较低,属于柔性、风敏感结构,工程中风致损毁的索膜结构实例较多,因此研究索穹顶结构的风振响应具有重要意义。目前多数针对索穹顶结构的风振响应研究多是将下部索杆体系和结构顶部的张拉膜结构分开研究,这与结构实际的工作状态存在一定差异。
     本文建立了跨度为100m的大跨度球面索穹顶结构有限元分析模型,分别研究了索杆体系和膜-索杆体系的结构自振特点,并进行了两种结构体系风振响应的频域计算,得到了频域内结构的风振响应特点和风振系数,通过对比分析,证明了索杆体系运用于风振响应研究的不合理性。在此基础上,研究了参振模态数目对基于频域法的结构风振响应计算结果的影响,给出了索穹顶结构风振计算参振模态数的建议值。
     在结构形态分析、静风计算和频域计算的基础上,本文还对膜-索杆体系进行了时域内的风振响应计算,总结了索穹顶结构风振时程响应的特点,与频域内的计算结果进行了对比。研究发现:在时域法中,与风向成0o的剖面上索穹顶结构脊索迎风向节点风振响应的脉动程度小于背风向的,在其他剖面上则不一定满足这一规律。脉动风的能量大部分由膜面耗散。脉动风作用下结构迎风向的膜面应力变化幅度很小,背风向膜面应力的变化幅度较大。在结构的大多数部位两种方法得到的风振系数都较为接近。
     总之,索穹顶结构抗风设计重点应是保证膜材不发生强度破坏和位移响应极限值在控制范围内。一般索不易发生松弛。此外,由于结构体型本身以及风荷载的一些特性,结构以上抬为主,立杆也不会发生失稳或强度破坏。
Cable dome is a kind of tensile structure with good performance and beautiful diversiform appearance, which is composed of cables, membrane and struts. This structure is sensitive to wind load and its nature frequency is low for it is flexible. In actual project, there are many cases of wind-induced damage, so it is of great importance to investigate the wind-induced response of cable dome. Most current wind-resistant reaserches focus on the cable-strut (CS) system rather than the membrane-cable-strut (MCS) system which is obviously more similar to actual structures.
     In this paper, a FEA sphere cable dome model with the span of 100m is established. On the basis of that, the self-vibration characteristics of CS and MCS systems are studied separately. Besides, frequency domain results are obtained and the wind-induced vibration coefficients are calculated. By comparing the results of the two systems, the CS system is proved not appropriate for wind-induced response analysis. After that, the number of the combined modes in the frequency domain computation is discussed and recommended.
     Time history responsed analysis of MCS system which follows the from-finding and static analysis is carried out to investigate the response in time domain. When achieving the comparison between time and frequency domain results, these conclusions can be drawed: in time domain analysis, responses of windward ridge cable elements are larger than that of leeward elements on the profile which is parallel with the wind direction. Energy of fluctuating wind is mostly dissipated by membrane. The amplitude of stress variation of leeward membrane elements is larger than that of windward membrane. The wind-induced vibration coefficients of time and frequency domain are close to each other in most part of the structure.
     In brief, the crucial point of cable dome wind-resistant design is to guarantee that the strength failure of membrane would not happen and the wind-induced vibration is under control. Generally, the cable would not slack and the struts would not collapse or lost their stability during a gusting. Dispalcements are mostly upward due to the model shape and wind characteristics.
引文
[1] Barnes, M. R. Applications of Dynamic Relaxation to Design and Analysis of Cable, Membrane and Pneumatic Structures. 2nd Int. Conf. on Space Structures, 1975.
    [2]钱若军,杨联萍.张力结构的分析·设计·施工[M].南京:东南大学出版社,2003.
    [3]杨庆山,姜忆南.张拉索-膜结构分析与设计[M].北京:科学出版社,2004.
    [4]陈务军.膜结构工程设计[M].北京:中国建筑工业出版社,2005.
    [5]罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究[J].浙江大学学报(工学版),2005,39(1):40-45.
    [6] Pugh A. An introduction to tensegrity [M]. Berkeley: University of California Press, 1976.
    [7]詹伟东,董石麟.索穹顶结构体系的研究进展[J].浙江大学学报(工学版),2004,38(10):22-26.1299-1307.
    [8]卫东,沈世钊.索穹顶中考虑薄膜与索协同工作对结构性能的影响[J].空间结构,2000,6(2):24-29.
    [9]卫东.索穹顶结构的成形和受力性能研究[D].哈尔滨:哈尔滨建筑大学,1997.
    [10]周家伟,董石麟,袁行飞.具有外环桁架的肋环型索穹顶初始预应力分布快速计算法[J].沈阳建筑大学学报(自然科学版),2009,25(2):217-222.
    [11]袁行飞,董石麟.索穹顶结构的新形式及其初始预应力确定[J].工程力学,2005,22(2):22-26.
    [12]袁行飞,董石麟.索穹顶结构整体可行预应力概念和应用[J].土木工程学报,2001, 34(2):33-37.
    [13]袁行飞,董石麟.多自应力模态索穹顶结构的几何构造分析[J].计算力学学报,2001, 18(4):483-487.
    [14]冯虹,袁勇.索穹顶结构静、动力特性分析[J].四川建筑科学研究,2006,32(2):12-14.
    [15]向阳,沈世钊,赵臣.张拉式薄膜结构的弹性模型风洞实验研究[J].空间结构,1998,5(3):31-36.
    [16]孙瑛,武岳,林志兴,沈世钊.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报,2007,40(4):1-5.
    [17]孙瑛,赵柏玲,曹正罡,武岳.多国荷载规范中平屋盖及球形屋盖体型系数取值探讨[J].空间结构,2009,15(2):17-21.
    [18]李芳,王国砚,茆会勇,张相庭.考虑索穹顶结构构形变化的空气动力失稳分析[J].同济大学学报,2002,30(5):609-613.
    [19]周岱,马骏,李华峰,朱忠义.大跨柔性空间结构风压和耦合风效应分析[J].振动与冲击,2009,28(6):17-22.
    [20]孙旭峰,董石麟.索穹顶结构的气动阻尼识别[J].空气动力学学报,2009,27(2):206-209.
    [21]刘永清,黄呈伟,杨艳华,陈薇薇.索穹顶结构的有限元法分析和张拉施工方法[J].昆明理工大学学报(理工版),2003,28(4):79-82.
    [22]陈联盟,董石麟,袁行飞.索穹顶结构施工成形理论分析和试验研究[J].土木工程学报,2006,39(11):33-36.
    [23]沈世钊,徐崇宝,赵臣,武岳.悬索结构设计(第二版)[M].北京:中国建筑工业出版社,2006.
    [24] Minami H., Toyada H., Kotera K. and Segawa S. An Experimental study on Tension Characteristics of suspension Membrane, Shells, Membrane and Space Frames, Proc. IASS Symposium, Osaka, 2, 1986.
    [25]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [26]汤荣伟.索穹顶结构成形理论及结构优化[D].上海:同济大学,2005.
    [27]宋惠敏,惠颖.力密度法在索穹顶形态确定中的应用[J].钢结构,2008,23(9):26-29.
    [28]彭晓宁.力密度法及非线性有限元法在索膜结构形态分析中的应用[D].广州:华南理工大学硕士学位论文,2006.
    [29]胡宁.索杆膜空间结构协同分析理论及风振响应研究[D].杭州:浙江大学博士学位论文,2003.
    [30]汪大绥,张伟育,方卫,王荣,丁生根,高超,张安安.世博轴大跨度索膜结构设计与研究[J].建筑结构学报,2010,31(5):1-12.
    [31]叶继红,田珺.张拉膜结构形状确定的实验研究[J].工程力学,2010,27(4):117-124.
    [32]郑君华,袁行飞,董石麟,罗尧治,曲晓宁.考虑膜材与索杆协同工作的索穹顶找形分析[J].浙江大学学报(工学版),2008,42(1):25-28.
    [33]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社,2002.
    [34]中国建筑科学院主编.中华人民共和国国家标准,建筑结构荷载规范(GB50009—2001)(2006)[S].北京:中国建筑工业出版社,2006.
    [35] American Society of Civil Engineering (ASCE). Minimum design loads for building and other structures, ANSI/ASCE7-02[S]. 2002.
    [36] Architectural Institute of Japan. AIJ Recommendations for Loads on Building (in English) [S], 2004.
    [37] National Research Council of Canada. National Building Code of Canada [S], 1995.
    [38](英)福斯特,(比)莫莱尔特.欧洲张力薄膜结构设计指南[M].杨庆山,姜忆南,译.北京:机械工业出版社,2006.
    [39] ASCES Tensile membrane strutures ( draft) [S]. 2002 .
    [40]吴瑾,夏逸鸣,张丽芳.土木工程结构抗风设计[M].北京:科学出版社,2007.
    [41] Simiu E, Scanlan R H. Wind Effect on Structure-An introduction to wind engineering [M], New York: John Wiley & Sons, Inc, 1992.
    [42] AYSYS 12.0 Manual [M]. ANSYS Inc., 2004.
    [43]乔文涛,陈志华,韩庆华.平面张弦梁结构风致响应的频域分析[J].天津大学学报,2008,41(11):1327-1332.
    [44]杨庆山,沈世钊.悬索结构随机风振反应分析[J].建筑结构学报,1998,19(4):29-38.
    [45]孙旭峰,孙宇坤,董石麟.肋环型索穹顶结构的气动阻尼研究[J].土木工程学报,42(8):37-41.
    [46]高新京,吴明超.膜结构工程技术与应用[M].北京:机械工业出版社,2010.
    [47](英)福斯特,(比)莫莱尔特.欧洲张力薄膜结构设计指南[M].杨庆山,姜忆南,译.北京:机械工业出版社,2006.
    [48] CECS 158: 2004膜结构技术规程.
    [49] Holmes J. Wind loading of structures [J], London: Spon Press, 2001.
    [50] A. Kareem. Wind effects on structures: a probabilistic view point [J], Prob. Eng. Mech. 1987, 2(4):166–200.
    [51] Gurley KR, Tognarelli MA, Kareem A. Analysis and simulation tools for wind engineering [J]. Probabilistic Engineering Mechanics. 1997, 12(1):9–31.
    [52] Stathopoulos T. Pdf of wind pressures on low-rise buildings [J]. Journal of the StructuralDivision. 1980, 106(ST5):973–90.
    [53]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001,7(3):3-11.
    [54] B. Bienkiewicz, Y. Sun, Local wind loading on the roof of a low-rise building [J]. J. Wind Eng. and Ind. Aerodyn. 1992, 45:11-24.
    [55] MA Jun, ZHOU Dai, Bao Yan. Wind pressure distribution and wind-induced dynamic response for space groined latticed vaults [J]. Journal of Shanghai Jiao tong University (Science), 2008, 13(4):391 - 399.
    [56] M.Gioffre, V.Gusella, M.Grigoriu. Simulation of non-Gaussian field applied to wind pressure fluctuations[J], Probabilistic Engineering Mechanics, 15(2000): 339-345.
    [57]李立,廖锦翔,李亮.拟合带间歇性的人工风速序列[J].空气动力学学报,2004,22(3):365-370.
    [58] L.E. Wittig, A.K. Sinha, Simulation of multicorrelated random processes using the FFT algorithm [J]. J. Acoust. Soc. Am., 1975, 58 (3): 630-634.
    [59] C.P.W.Geurts, H.S.Rutten, J.A.Wisse, Coherence of wind-induced pressures on buildings in urban areas: setup of a full scale experiment, J. Wind Eng. Ind. Aerodyn. 1996, 65:31-41.
    [60] F Assmoah. Discrete wavelet analysis of signal [J]. International Journal of Engineering Education, 1999, 36: 255-264.
    [61] J Mann. Wind field simulation [J]. Prob. Engng. Mech., 1998, 13: 269-282.
    [62] Kareem, Sobzyk, Trebicki. Maximum entropy principle and non-stationary distributions of stochastic systems [J]. Probabilistic Engineering Mechanics, 1996, 11: 169-178.
    [63] Shinozuka M, Jan C M. Digital simulation of random processes and its application [J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
    [64] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation [J]. Appl. Mech. Rev, 1991, 44(4):191-203.
    [65] C Glaysar, G Valerie. Maximum of entropy and extension of covariance matrices for periodically correlated and multivariate process [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 59: 37-52.
    [66] LI You-sun, Kareem A. Simulation of multivariate non-stationary random processes:Hybrid DFT and digital filtering approach [J]. Journal of Engineering Mechanics, 1997, (10):1302-1310.
    [67] Kitagawa T, Nomura T. A wavelet-based method to generate artifice wind fluctuation data [J]. J Wind Eng. Ind. Aerodyn., 2002, 90:943-964.
    [68] Yamada M, Ohkitani K. Orthonormal wavelet analysis of turbulence [J]. Fluid Dyn. Res., 1991, (8):101-115.
    [69]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32.
    [70]曾少青.宁波国际会展中心屋盖结构风振响应分析[D].广州:华南理工大学硕士学位论文,2010.
    [71]徐庆阳,李爱群,丁幼亮,沈顺高,裴永忠.三维脉动风模拟技术在大跨机库风振分析中的应用[J].建筑结构学报(增刊),2007,S(1):118-123.
    [72]郑咸义,姚仰新,雷秀仁,陆子强,黄凤辉.应用数值分析[M].广州:华南理工大学出版社,2008.
    [73]陈贤川,赵阳,董石麟.大跨度空间网格结构风振响应主要贡献模态的识别及选取[J].建筑结构学报,2006,27(1):9-14.
    [74]王秀丽,常文兵.考虑风与结构耦合作用的张弦梁结构风振响应分析[J].兰州理工大学学报,2008,34(2):108-112.
    [75]张华,单建.薄膜结构随机风场模拟和耦合风振响应分析[J].工程力学,2006,23(10):19-24.
    [76]何艳丽.空间结构的气动稳定性分析[J].上海交通大学学报,2002,36(11):1616-1620.
    [77]余浩.弹性构件边界索膜结构的找形与风振响应分析[D].广州:华南理工大学硕士学位论文,2009.
    [78]魏德敏,边建峰.球面网壳结构风振响应时程分析[J].华南理工大学学报,2007,35(11):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700