用户名: 密码: 验证码:
高Al含量Ti-Al-N系硬质涂层的制备及其抗氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代机械加工向着高速切削及干式切削技术方向的发展,对工具涂层的要求越来越高,即高结合力、高硬度、高红硬性。Ti-Al-N系硬质涂层已在国内外得到广泛研究和应用。但铝含量及涂层的结构对涂层综合力学性能及抗氧化性能影响的系统研究报道不多。本文重点展开这两方面的研究探讨,具有一定的理论和实践意义。
     本文采用多弧离子镀技术,利用纯Ti靶及TiAl合金靶,在SKH51高速钢表面沉积Ti-Al-N系硬质涂层,优化了制备高铝含量Ti_(0.33)Al_(0.67)N涂层及TiN/Ti_(0.33)Al_(0.67)N多层结构涂层的制备工艺。采用材料表面性能测试仪、显微硬度计、扫描电镜、X射线衍射仪、电子探针仪等系统研究了Al含量及多层结构对涂层表面形貌、相结构、显微硬度、膜基结合力及高温抗氧化性能的影响规律。研究结果表明:
     1、在基体偏压为80V(占空比50%),TiAl靶电流为70A,N_2气压为3.0×10~(-1)Pa的条件下,制备出厚度2~2.5μm的Ti_(0.33)Al_(0.67)N涂层显微硬度可以达到3100HV0.01,结合力达到49N。
     2、不同Al含量的单一结构Ti_(1-x)Al_xN涂层及多层结构的TiN/Ti_(1-x)Al_xN涂层都由fcc结构的(Ti,Al)N相组成,并随着Al含量的增加衍射峰的位置向右偏移(2θ变大),晶格常数变小。
     3、单一结构和多层结构的涂层都呈致密的柱状晶结构;单一结构涂层的断口呈完整柱状晶撕裂方式,而多层结构涂层断口在局部区域呈明显的短纤维状。
     4、与单层结构的Ti_(1-x)Al_xN涂层比较,多层结构的TiN/Ti_(1-x)Al_xN涂层可以在基本保持显微硬度的情况下,较大幅度地提高膜-基结合力。
     5、Ti_(1-x)Al_xN涂层保温1小时起始氧化临界温度Tc随着涂层中Al含量的增加单调增加。Ti_(0.33)Al_(0.67)N涂层保温1小时起始氧化温度接近900℃。
     6、无论单层结构还是多层结构,800℃条件下氧化增重服从抛物线规律,氧化增重速率K_p值随着Al的增加减小。与单层结构的Ti_(1-x)Al_xN涂层比较,多层结构的TiN/Ti_(1-x)Al_xN涂层抗氧化性能有所降低。
     7、致密的Ti_(1-x)Al_xN涂层能够有效地阻止基体金属中合金元素的扩散,但大尺寸金属熔滴同涂层之间形成的界面是氧及基体金属元素扩散的快速通道。由于熔滴存在,减少了涂层阻挡层厚度。涂层氧化起始的临界温度及时间同形成Fe_2O_3产物密切相关。
Due to the demanding requirement from advanced machining and processesing, machining tools call for advanced coating with high hardness, strong adhesion and excellent oxidation performance. Upto now, Ti-Al-N coating has been extensively researched and developed over the world. However, there is less systematic study on the effect of Al content and architecture structure of Ti-Al-N coatings on their combined mechanical propertie and oxidation behavior. This paper pays more attention on these two aspects.
     By means of multi-arc ion plating with pure Ti and TiAl alloy targets, Ti-Al-N hard coatings were deposited on SKH51 high speed steel substrate. The microhardness, and the adhesion strength between the coating and substrate were tested by multi function tester of material’s surface properties, microhardness tester. Eelectron microscopy, X-ray diffraction and electron probe analysis system were used to characterize the constituent phases and microstructure of the coating before or afteranealing. The following conclusion can be made:
     1. The microhardness and adhesion of Ti_(0.33)Al_(0.67)N monolayer coating with thickness of 2 ~ 2.5μm can reach 3100 HV_(0.01), and 49N respectively, when the substrate bias voltage is 80V (duty cycle 50%), TiAl target current is 70A and N_2 pressure is 3.0×10~(-1)Pa.
     2. All the Ti_(1-x)Al_xN monolayer and TiN/Ti_(1-x)Al_xN multilayers coatings with different Al content are composed with f.c.cδ-TiNstructure. With Al content increasing, the position of diffraction peaks shift toward right, which means the lattice cell size decreases.
     3. The Ti_(1-x)Al_xN monolayer and the TiN/ Ti_(1-x)Al_xN multilayers coatings all exhibited dense columnar structures.The tear-off of a solid whole columnar crystal is the main fracture mode for the monolayer coating, while short fiber-like fracture is found in some area for multilayer coating.
     4. Comparing with Ti_(1-x)Al_xN monolayer coating, TiN/Ti_(1-x)Al_xN multilayer coating improve the film–substrate adhesion significantly, without less microhardness loss.
     5. When annealing for 1 hour, the critical initial oxidation temperature Tc of Ti_(1-x)Al_xN coating increases monotonously with Al content increasing. Tc of Ti_(0.33)Al_(0.67)N coating specimens is close to 900℃.
     6. Annealing at 800℃, both monolayer and multilayer coating obey the parabolic law of oxidation weight gain. The oxidation weight gain speed coefficient Kp value decreases with the Al contet rising. Compared with monolayer coating, oxidation resistance of multilayer coatings deceased.
     7. Diffusion of substrate metal elements could be prevented effectively by dense Ti_(1-x)Al_xN coating. The rapid diffusion channels would be formed at the interface between melt-droplets the coating. The critical temperature and critical time of Ti-Al-N coating specimens related closely with the formation of Fe_2O_3 oxide.
引文
[1]吴锦雷.纳米光电功能涂层[M].北京:北京大学出版社, 2006
    [2]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004
    [3]陈维喜.铣刀涂层技术的现状与展望[J].工具技术, 2000, 34(3): 3-6
    [4]毛延发,唐为国,刘金良等. TiAlN纳米复合涂层的技术进展[J].工具技术, 2006, 40(4):20-24
    [5] Pal Dey S, Deevi S.C. Single layer and multilayer wear resistant coatings of (Ti, Al)N: A review[J]. Materials Science and Engineering, A342, (2003): 58-79
    [6] Endler I, H?hn M, Herrmann M. Novel aluminum-rich Ti_(1-x)Al_xN coatings by LPCVD[J]. Surface and Coatings Technology, 203 (2008): 530?533
    [7]宋贵宏,杜昊,贺春林等.硬质与超硬涂层[M].北京:化学工业出版社, 2007
    [8]倪晟,孙卓,赵强,等.磁控共溅射制备氮化钛铝涂层及机械性能的研究[J].功能材料, 2005, 12(36): 1844
    [9] Yang Q, Seo D Y, et al. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings [J], Surface & Coatings Technology, 2004(188): 168- 173
    [10]李明升,陈柯伟,王福会,等.空心阴极离子镀TiAN复合涂层结构及抗氧化性能的研究[J].腐蚀科学与防护技术(增刊), 2001, 11(13): 412-413
    [11]曾凤章,徐新乐,吴玉广.多弧离子镀膜工艺的技术开发[J].北京工业大学学报, 1999, 19(1): 127-132
    [12] Lafferty J. M, Cobine J. D. Vacuum Arcs: Theory and Application[M]. New York: Wiley, 1980
    [13]王福贞.离子镀技术的发展[J].国外金属热处理, 1997, 10(2): 27-31.
    [14]闻立时.表面沉积技术[M].北京:北京机械工业出版社, 1989: 162-168
    [15] Richthofen A, Remer R.C, et al. Composition binding states structure an dmorphology of the corrosion layer of an oxidized Ti0.46Al0.54N film[J]. Thin Solid Films, 2006(312): 190-194
    [16]张钧,赵彦辉.多弧离子镀技术与应用[M].北京:冶金工业出版社, 2007
    [17] Hurkmans T, Lewis D.B, Brooks JS, et al. Chromium nitride coatings grown by unbalan-ced magnetron (UBM) and combined arc/unbalanced magnetron (ABS) deposition tech- niques[J]. Surf Coat Techonol, 86-87(1996):192-199
    [18] Donohue L.A, Smith I.J, Münz W.D, et al. Microstructure and oxidation-resistance of Ti_(1-x-y-z)Al_xCryYzN layers grown by combined steered arc/unbalanced-magnetron sputter deposition[J]. Surf Coat Techonol, 94-95(1997):226-231
    [19] Zhou M, Makino Y, Nose M, et al. Phase transition and properties of Ti-Al-N thin films prepared r.f.-plasma assisted magnetron sputtering[J]. Thin Solid Films 339(1999): 203-208
    [20] Makino Y, Prediction of phase change in pseudobinary transition metal aluminum nitri- des by band parameters method[J]. Surf Coat Techonol, 193(2005): 185-191
    [21] Kimura A, Hasegawa H, Yamada K, et al. Effects of Al content on hardness, lattice para- meter and microstructure of Ti1?xAlxN films[J]. Surf Coat Techonol, 120-121(1999): 438-441
    [22] Inamura S, Nobugai K, Kanamaru F.The preparation of NaCl-type Ti_(1-x)Al_xN solid solution[J]. Journal of Solid State Chemistry, 68(1987):124-127
    [23]李明升.电弧离子镀TiAlN及TiAlYN涂层的沉积工艺及性能研究[D].沈阳:中科院金属研究所, 20020601
    [24] Barshilia H. C, Acharya S, Ghosh M, et al. Performance evaluation of TiAlCrYN nano- composite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system[J]. Vacuum 85(2010):411-420
    [25] Wadsworth I, Smith I.J, Donohue L.A, et al. Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings[J]. Surf Coat Techonol, 94-95(1997): 315-321
    [26] Zhou Z, Rainforth W.M, Luo Q,et al. Wear and friction of TiAlN/VN coatings against Al_2O_3 in air at room and elevated temperatures[J]. Acta Materialia, 58(2010):2912-2925
    [27] Knotek O, Bêhmer M, Leyendecker T, et al. The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings[J]. Materials Science and Enginering A, 105-106 (1988): 481-488
    [28] Knotek O, Fler F.L, Kimer G. Cutting performance of multicomponent and multilayer coatings on cemented carbides and cermets for interrupted cut machining[J].Interna- tional Journal of Refractory Metals Hard Mater, 14 (1996) :195-202
    [29] Knotek O, Barimani A, Bosserhoff B. Structure and properties of magnetron sputtered Ti-V-N coating[J]. Thin Solid Films, 193-194 (1990): 557-564
    [30] Carvalho N, Zoestbergen E, Kooi B, et al. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings[J]. Thin Solid Films 429 (2003):179-189
    [31] Herranen M, Wiklund U, Carlsson J. O, et al. Corrosion behaviour of Ti/TiN multilayer tool steel[J]. Surf Coat Technol. 99(1998): 191-196
    [32] Wilklund U, Hedenqvist P, Hogmark S. Multilayer cracking resistance in bending[J]. Surf Coating Technology, 1997, 97: 773-778
    [33] Prengel H, Jindal P, Wendt K, et al. A new class of high performance PVD coatings for carbide cutting tools[J]. Surf Coat Technol, 139 (2001): 25-34
    [34] Tavares C.J, Rebouta L, Alves J, et al. A structural and mechanical analysis on PVD- grown (Ti,Al)N/Mo multilayers[J] Thin Solid Films, 377-378 (2000): 425-429
    [35] Taveres C.J, Rebouta L, Andritschky M, et al. Structure determination of (Ti,Al)N/Mo multilayers[J]. Thin Solid Films, 373(2000):287-292
    [36] Helmerssonu, Toderovas, Marbertl, et al. Growth of single crystal TiN/VN strained layer supper lattices with eitremely high mechanical hardness[J]. Applied Physics. 1987(2): 481-487
    [37] Yang W, Tsakalakos T, Hilliard J. Enhanced elastic modulusin composition- modulated gold-nickel and copper-palladium foils[J]. Journal of Applied Physics, 1977, 48(2): 876-879
    [38] Ueno M, Onodera A, Shimomura O, e t al. X-ray ob servation of the structural phase transition of alum -inum nitride under high p ressure[J]. Phys. Rev. B, 1992, 45( 17): 10123-10126
    [39] Pandey R, Sutjian A, Seel M, et al. Electronic structure of high pressure phase of AlN[J]. Material Research, 1993, 8: 1922-1927
    [40] Madan A, Kim IW, Cheng S.C, et al. Stabilization of cubic AlN in epitaxial AlN /TiN superlattices[J]. Physical Review Letters, 1997, 78(9): 1743-1746
    [41] K im IW, L iQuan, M arks L D, et al. Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices[J]. Applied Physics Letters, 2001, 78(7): 892-894
    [42]劳技军,胡晓萍,虞晓江,等. A lN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响.物理学报(Acta Physica Sinica), 2003, 52( 9): 2259-2263
    [43] Veprek S, Haussmann M, Reiprich S, et al. Novel thermodynamically stable and oxidation resistant superhard coating materials [J]. 86-87(1996):394-401
    [44] Wang D.Y, Chang C.L, Wong K.W, et al. Improvement of the interfacial integrity of (Ti, Al)N hard coatings deposited on high speed steel cutting tools[J]. Surf Coat Technol. 120-121(1999): 388-394
    [45]瞿全炎.过滤电弧离子镀TiN涂层的制备、性能及微观结构研究[D].广州:华南理工大学, 2008
    [46]李恒德,肖纪美.材料表面与界面[M].北京:清华大学出版, 1990, 43-119
    [47] Boxman R.L, Martin P.L, Sanders D.M. Handbook of Vacuum Arc Science and Technol- ogy [M]. New Jersey, USA: Noyes Publications, Park Ridge, 1995
    [48] Ikeda S, Gilles S, Chenevier B. Electron microscopy analysis of the microstructure of Ti_(1-x)Al_xN alloy thin films prepared using a chemical vapour deposition method [J]. Thin Solid Films, 315(1998):257-262
    [49] Wahlsrtom U, Hultman L, Sundgren J.E, et al.Crystal growth and microstructure of poly- crystalline Ti_(1-x)Al_xN alloy films deposited by ultra-high-vacuum dual-target magnetron spyttering[J]. Thin Solid Films, 1993(235): 62-70
    [50] McKenzie D.R, Yin Y, McFall W.D, et al. The Orientation Dependence of Elastic Strain Energy in Cubic Crystals and Its Application to Preferred Orientation in Titanium Nitri- des Thin Films[J]. Surface Science, 1996, 357-358
    [51] Oh U.C. Effects of Strain Energy on the Preferred Orientation of TiN Thin Films[J]. Applied Physics.1993, 74(3):1692-1696
    [52] Pelleg J, Zevin L.Z, Lungo S,et al. Reactive-sputter-deposited TiN Films on Glass Substrates[J]. Thin Solid Films.1991, 197(1-2):117-128
    [53] Wüstefeld C, Rafaja D, Klemm V, Michotte C. Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1?xAlxN protective coatings grown by cathodic arc evaporation [J].Surf Coatings Technol 205 (2010) 1345–1349
    [54] Santana A E, Karimi A. Microstructure and mechanical behavior of TiAlCrN multilayers thin films [J]. Surf Coat Technol. 177-178(2004): 334-40
    [55] Manaila R, Devenyi A, Biro D, et al. Multilayer TiAlN coatings with composition grad- ient[J]. Surf Coat Technol. 151-152 (2002):21-25
    [56] Herranen M, Wiklund U, Carlsson J.O, et al. Corrosion behaviour of Ti/TiN multilayer coated tool steel[J]. Surf Coat Technol 1998, 99: 191-196
    [57] Carvalho N, Zoestbergen E, Kooi BJ, et al. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti, Al)N coatings[J]. Thin Solid Films 2003,429: 179-189
    [58] Ducros C, Benevent V, Sanchette F. Deposition, characterization and machining perform- ance of multilayer PVD coatings on cemented carbide cutting tools[J]. Surf Coat Technol 2003, 163-164: 681-688
    [59] Liu C, Leyland A, Bi Q, et al. Corrosion resistance of multi-layer plasma-assisted phy- sical vapour deposition TiN and CrN coatings[J]. Surf Coat Technol 2001, 141: 164-73
    [60] PalDey S, Deevi S.C. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review[J]. Materials Science and Engineering A, 342 (2003): 58-79
    [61]彭红瑞,石玉龙,谢雁.PCVD-TiN,(Ti,Al)N及TiSiN涂层的抗高温氧化性能[J].材料保护.1999,32
    [62] Panjan P, Navinsek B, Clekada M. Oxidation behaviour of TiAlN coatings sputtered at low temperature[J]. Vacuum 53(1999):127-131
    [63] Gao Jie, Li Changrong, Wang Na, et al. Thermodynamic analysis of the Ti-Al-N system [J]. Univ. Sci. Technol. Beijing. 2008, 15(4):420-424
    [64] Adibi F, Petrov I, Hultman L, Wahlstrm U, et al. Crystal growth and microstructure of polycrhstalline Ti_(1-x)Al_xN alloy films deposited by ultra-high-vacuum dual-target magnetron sputting [J]. Thin Solid Films, 205 (1991): 153-164
    [65] H?rling A, Hultman L, Odén M, et al. Mechanical properties and machining perform- ance of Ti_(1-x)Al_xN coated cutting tools [J]. Surf Coat Technol, 191(2005):384-392
    [66]孙扬善,余新泉,黄海波,等. Fe3Al金属间化物的高温抗氧化性能[J].金属学报. 1998, 34 (11): 1131-1136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700