用户名: 密码: 验证码:
建筑围护材料热导率反演模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对城市建筑围护结构与材料特性检测以及节能检测的目的,本文通过建筑围护材料热导率反演的模拟研究,为建筑节能改造提供理论依据和实际工程的计算软件需求。
     本文针对一定条件下的建筑围护结构,建立了计算模型和定解条件,采用控制容积法模拟了多层多孔材料结构的热传导过程,对于每一层物性参数的非连续性采用调和平均法进行了处理,对于复合围护结构采用有效热导率组合的方法确定了有效热导率,对热传导反问题采用了遗传算法和Levenberg-Marquardt算法反演建筑围护材料热导率,编制了反演计算程序。对这两种数值方法的可靠性验证表明:遗传算法和Levenberg-Marquardt算法都能够适用于本文预测动态气候条件下建筑围护复合结构的热导率,数值模拟结果与实验值接近。遗传算法虽然计算耗时多,对计算机配置要求较高,但反演精度高,初始值及测量误差对计算精度的影响小;而Levenberg-Marquardt算法计算速度快,但反演结果相对于遗传算法精度较低,对测量误差较为敏感,并且反演精度很大程度上依赖于对初始值的选择。
     本文选择遗传算法编制了能够快速准确反演建筑围护材料热导率的数值计算软件。该软件采用C++代码,通过输入边界条件、物性参数、几何尺寸和空间步长及时间步长,即可在线反演建筑围护材料热导率,不但适用于本文算例的计算,它还可以用于反演不同结构材料的复合有效热导率,方便实用。此软件已作为国家支撑项目中建筑围护材料保温效果在线评估和诊断仿真总平台的子模块投入应用,为衡量节能建筑的围护结构隔热保温性能提供了重要依据,也为后继研究奠定了坚实基础。
In accordance with the requirement for the detection of feature and energy conservation of building envelope, Inversion study on heat conductivity of building envelope provides theoretical support and requirement for the application of the software.
     In a certain condition of the building envelope, model and boundary conditions were confirmed. The control-volume-based numerical method was presented to deal with the procedure of heat transfer in a multilayer wall. The harmonic mean method was used to deal with discontinuity of material properties of the multilayer wall. The effective thermal conductivity was calculated by the compound method. Genetic Algorithm and Levenberg-Marquardt method were used to identify the thermal conductivity of building envelope. The composition with the genetic algorithm and the Levenberg-Marquardt method were programmed. It indicates that, the genetic algorithm and the Levenberg-Marquardt method are both suitable for the inverse problem of heat condition in transient state on heat conductivity of numerical schemes utilizing. The calculation results are approximately equal to the experiment result. The calculation speed of genetic algorithm is slow and the genetic algorithm needs high-powered computer configuration, which are the rub of the research. The calculated result by genetic algorithm shows that the accuracy of this method is high, and the method is not limited to initial value and it can overcome the effect of the measured error . The speed of the Levenberg-Marquardt method is fast but the result is inaccurate compared with genetic algorithm, and it can't overcome the effect of the measured error and initial value.
     A fast and accurate software for calculating heat conductivity of building envelope has been developed. The software uses C++ language. It can calculate heat conductivity of building envelope on the condition the you enter the parameter such as boundary conditions, physical parameters, physical dimension, Spatial Lag and time step. This software is not only applied to this example but also simply applied to identify conductivity of different structures and different material of complex structures. This software is a sub module of the chief platform which serves for a nation-support project for heat conservation effect on-line assessment and diagnosis emulation. It offers vital information for estimating the capability of heat conversation of the building envelope, and also provides substantial support for future studies.
引文
[1].王飞.基于成本的墙体保温层厚度多学科优化研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [2]. Tervola P. A method to determine the thermal conductivity from measured temperature profiles [J]. Heat and Mass Transfer, 1989 (32) :1425 - 1430.
    [3]. Tadeusz Telejko, Zbigniew Malinowski. Application of an inverse solution to the thermal conductivity identification using the finite element method [J]. Journal of Materials Processing Technology, 2004 (146) :145 -155.
    [4]. Telejko T, Malinowski Z, Buczek A. Analysis of the inverse solution in application to determining thermal conductivity of metals [J]. Metall. Foundry Eng , 1998(24) :177 - 185.
    [5].关荣华,曹春梅,陈衡.工业设备内部缺陷的红外诊断研究[J].激光与红外,2001,30(4):288-229.
    [6]. Stolz G J. Numerical solution to an inverse problem of heat conduction for simple shampes [J]. Heat Transfer, 1960, 82(C): 20-26.
    [7]. Alifanov O M, Mikhailov V V. Solution of the nonlinear inverse conductivity problem by the iteration method [J]. J.Eng. Phys., 1978, 35(6): 1501-1506.
    [8].俞昌铭.计算热物性参数的导热反问题[J].工程热物理学报, 1982, 3(4): 372-378.
    [9]. Kohn R, Vogelins M. Determining conductivity by boundary measurements [J]. Common Pure Appl. Math, 1984, 137(3): 289-298.
    [10].王登刚,刘迎曦,李守巨.非线性二维温态导热反问题的一种数值解法[J].西安交通大学学报, 2000,11: 49-52.
    [11].吴相豪,吴中如.混凝土热力学参数反分析模型[J].水力发电, 2001, (2): 20-22.
    [12].朱伯芳.大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社, 1999:37-41.
    [13].徐安军,田乃媛.传热反问题研究方法在钢水温度预测中的应用[J].炼钢,1996,36(7):36-40.
    [14].黄光远,李小军.数学物理反问题[M].山东:山东科学技术出版社,1993:1-35.
    [15].胡国俊.传热中的多总量反演研究,[硕士学位论文].大连:大连理工大学,2002.
    [16]. Stolz G Jr. Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes. [J]. Heat Transfer, 1960(80):20-26.
    [17].肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003.
    [18]. M M Mejias , H R B Orlande. A comparison of different parameter estimation techniques for the identification of thermal conductivity components of orthotropic solid [C]. 3rd InternationalConference on Inverse Problems in Engineering PortLudlow.WA.SUA, 1999(4):231-237.
    [19]. F Mzah. L Sassi. Jemni and S Ben Nasrallsh Optimal experiment design and simulations identification of thermo-physical properties of orthotropic solids [C]. 4th International Conference on Inverse Problems in Engineering Rio de Janeiro.Brazil, 2002(5):184-187.
    [20].万兆芳.共轭梯度法的改进及应用,[硕士学位论文].南京:南京理工大学,2010.
    [21]. B Sswaf, M N Ozisik. Determining the constant thermal conductivities of orthotropic materials by inverse analysis [J]. International Communications in Heat and Mass Transfer,1995, 122(2):201-211.
    [22]. Christophc Andrieu, Nando De Freitas. Arnaud Doucet and Michacl I Jordan [J]. An Introduction to MCMC for Machine Learning, 2003,50.5-43.
    [23]. Jingbo Wang, Nicholas Zabaras. A Bayesian inference approach to the inverse heat conduction problem [J]. International Journal of Heat and Mass Transfer, 2004, 47:3927-3941.
    [24]. Jingbo Wang, Nicholas Zabaras. Hierarchical Bayesian models for inverse problems in heat conduction Issue [M] .2005.
    [25]. J Wang , N Zabaras Using Bayesian statistics in the estimation of heat source in radiation [J].Heat Mass transfer, 2005.
    [26].薛齐文,扬海天,杜秀云.同伦正则化算法求解多总量瞬态热传导反问题[J].计算物理, 2006,23(2):151-157.
    [27].张宇鑫,宋玉普,王登刚,等.基于遗传算法的混凝土一维瞬态导热反问题[J].工程力学,2003,20(5):87-90.
    [28].薛齐文,魏伟.热传导反问题智能化识别[J].科学技术与工程,2009,9(24):7315-7318.
    [29]. Jean Hartmann, Claudio Imoberdorf, Michael Meisinger. UML-based integration testing [C]. Portland, Oregon: Proceeding of ISSTA, 2000:60-70.
    [30].张宏,须文波,孙俊.QPSO算法与PSO算法求解二维热传导反问题[J].计算机工程与设计,2007,28(16):3808-3811.
    [31].孙金金.基于神经网络法辨识建筑墙体传热系数的研究,[硕士学位论文].上海:同济大学,2007.
    [32].田立平.非线性热传导方程的反问题.唐山工程技术学院学报,1995,3.
    [33]. Beck J.V, Murio D.A. Combined function Specification-Regularization Procedure for Solution Inverse Heat Conduction Problem [J]. AIIAAJ, 1986, 24:180-185.
    [34]. Scott E.P, Beck J.V. Analysis of Order of the Sequential Regularization Solutions of Inverse Heat Conduction Problems. ASME [J]. Heat Transfer, 1989, 111:218-224.
    [35]. Voskoblinikov, Yu.E. Construction of a Regularized Solution to One Inverse Heat-Conduction Problem with Random Errors in the initial Data [J]. Journal of Engineering Physics, 1977.23(6):11489-1493.
    [36].黄平,孟永钢.最优化理论与方法[M].北京:清华大学出版社,2009:87-96.
    [37]. M M Mejias, H R B Orlande. A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids [C]. 3rd international conference on inverse problems in engineering, Port Ludlow, WA, USA, 1999.
    [38].高思云,杨晨.利用贝叶斯模型进行热参数估计[J].系统仿真学报,2006,18(6):1462-1465.
    [39].高思云.基于热传导反问题的材料热物性预测方法研究,[硕士学位论文].重庆:重庆大学,2005.
    [40]. McCulloch W, Pitts W. A logical calculus of the ideas imminent in nervous activity [J]. Bulletin of Mathematical Biophysics, 1943, 141-152.
    [41]. Hopfield J, Tank D. 'Neural' computation of decisions in optimization problems [J]. Biological Cybernetids, 1985, 52:141-152.
    [42]. Hopfield J, Tank D. Computing with neural circuits: a model [M] . Science, 1986, 233:625-633.
    [43].云庆夏.遗传算法原理[M] .北京:冶金工业出版社,2001:3-15.
    [44].杨晨,高思云.基于热传导反问题的各向异性材料热物性预测方法[J].化工学报,2007,58(6):1378-1384.
    [45]. A.V. Luikov, A.G. Shashkov, L.L. Vasiller, et al. Heat Mass Transfer [J], 1968, 11:117-140.
    [46].林瑞.多孔介质传热传质引论[M].北京:北京科学出版社,1995:117-128.
    [47].彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986:132-134.
    [48].陶文铨.数值传热学[M].西安西安交通大学出版社,2002:80-81.
    [49].许文发,季杰.严寒地区建筑供热量研究[J].哈尔滨建筑大学学报,1990,2(2):114-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700