用户名: 密码: 验证码:
基于水热改性的除磷晶种制备及其除磷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是造成水体富营养化的主要元素之一,又是不可再生且面临枯竭的重要自然资源,因此,研究高效除磷技术,开发新的磷资源迫在眉睫。利用结晶法去除并回收废水中的磷是目前公认的既能有效防治水体富营养化,又能实现磷资源可持续利用的有效途径,具有重要的研究价值。
     本文以模拟低浓度含磷废水为处理对象,对比考察了投加石英砂、陶粒、钢渣和矿渣材料对废水除磷的作用特性,筛选出了能够有效促进磷酸盐结晶反应的材料;探讨了不同活化改性方法对已筛选材料诱导结晶除磷效能的影响规律,在此基础上,利用机械活化后的粉末钢渣和矿渣分别制备了除磷晶种基质材料,进而通过水热改性获得了具有高效吸附和碱度及离子缓释效能的除磷晶种,总结提出了基于水热改性的新型除磷晶种制备方法;系统考察了除磷晶种处理低浓度含磷废水的结晶除磷特性,利用XRD和SEM-EDS等手段对除磷反应产物进行表征、分析,初步探讨了除磷晶种的结晶除磷机理。
     研究结果表明,在不调节原废水水质的条件下,投加石英砂、陶粒、钢渣和矿渣对模拟废水中磷的去除具有不同的作用效果。其中,钢渣的除磷能力显著优于矿渣,而陶粒和石英砂基本不具备除磷能力。
     提高模拟含磷废水的初始Ca/P、pH值、磷浓度和延长反应时间,可有效提高投加晶种材料的除磷效率。当Ca/P>2.0时,除磷效率缓慢增加;当溶液pH>9时,除磷效率显著提高;当初始磷浓度>10mg/L时,除磷效率显著高于低浓度时的除磷效率(<10mg/L);当结晶反应时间>24h时,再延长反应时间对结晶除磷效率无显著影响。
     在本实验条件下,投加陶粒和石英砂对模拟废水除磷效能没有明显改善,而投加钢渣可有效去除模拟废水中的磷,说明具有释放碱度和钙离子能力的材料能够促进结晶除磷过程,是制备高效除磷晶种的良好基质材料。
     通过对比考察机械法、水热法和机械-水热联合法对钢渣和矿渣的除磷活化效果,发现改性处理可有效提高钢渣和矿渣的除磷效能,其中机械-水热法活化效果最佳。因此,首先利用机械活化法对钢渣和矿渣进行破碎、粗磨处理,经筛分后获得粒径为3-5mm颗粒钢渣和颗粒矿渣;利用进一步研磨所得的钢渣和矿渣粉末,通过造粒、成型和养护环节,制备钢渣基复合滤料和矿渣基复合滤料,并与颗粒钢渣和颗粒矿渣共同作为除磷晶种基质材料,进行进一步的水热改性活化处理。
     试验结果表明,水热改性活化处理可显著提高四种基质材料的除磷能力,改性温度、改性时间、NaOH浓度及液固比对活化效果具有重要影响。提高改性温度、NaOH浓度和液固比,延长改性时间,对钢渣、矿渣和矿渣基复合滤料的结晶除磷效能有明显促进作用,其最佳改性温度、改性时间、NaOH浓度和液固比分别为200℃、24h、6M和1;而钢渣基复合滤料的改性活化条件与其他三种有所差异,最佳改性温度、改性时间、NaOH浓度和液固比分别为105℃、6h、6M和1。
     综合考虑机械活化和水热改性的处理成本及基质材料结晶除磷效能,总结得出基于不同基质材料的除磷晶种制备方法,获得了四种除磷晶种材料,其水热改后的除磷能力分别为:颗粒钢渣6.88 mg/ cm~3、颗粒矿渣4.67 mg/ cm~3、钢渣基复合滤料5.63 mg/ cm~3、矿渣基复合滤料4.19 mg/ cm~3,较改性前分别提高了60.8%、45.2%、54.8%、39.9%。
     研究发现,除磷晶种的结晶除磷特性与其碱度及钙离子缓释能力密切相关,当溶液初始Ca/P=2,pH=8.0时,改性颗粒钢渣、颗粒矿渣及矿渣基复合滤料的碱度及钙离子释放速度较快,其结晶除磷效能衰减速度快于改性钢渣基复合滤料,后者具有更为持久的连续除磷能力。
     XRD和SEM-EDS表征结果表明,不同反应条件下晶种材料的结晶除磷产物为不同形式的磷酸钙;随着反应时间的延长,磷酸钙沉淀晶化程度逐渐加强,晶核数量逐渐增多同时晶体逐渐增大,转化为结晶度不高的球状羟基磷酸钙(Ca_5(PO_4)_3OH)晶体,其Ca/P=1.66,与理论值(1.67)基本一致。基于水热改性制备的钢渣基复合滤料含有大量的水化硅酸钙C-S-H和Ca(OH)_2,能够释放出结晶过程所需的碱度和钙离子,从而促进磷酸盐以磷酸钙的形式析出,并进一步转化成为羟基磷酸钙晶体。
Phosphorus (P) is one of the major nutrient elements which could cause water eutrophication, however, it is also an important nonrenewable nature resource which is faced with exhaustion. So, it is extremely urgent to develop efficient phosphorus removal technology and new phosphorus resource facing the shortage of phosphate rock resources all over the world. Phosphorus removal by crystallization is of great research value which has been recognized as an effective way to prevent the water eutrophication and realize the sustainable utilization of phosphate rock resources.
     This study was investigated to recovery phosphorus from artificial low concentration phosphate wastewater. The character of phosphate removal with quartz sand, ceramsite, steel slag and blast furnace slag were compared and the favorable materials were screened out which could be in favor of phosphate crystallization. Different active methods for screened materials which could promote the phosphate crystallization were discussed. And the basis materials of crystal seeds were prepared by powdery steel slag and blast furnace slag. Then the crystal seeds could be obtained by the hydrothermal modification of basis materials, which have the ability of adsorption and release alkalinity and calcium. A method based hydrothermal modification to prepare an efficient crystal seeds for phosphate removal was extracted. The performances of crystal seeds for phosphate removal by crystallization were evaluated. The reaction products of phosphate crystallization with crystal seeds were analysed by XRD and SEM-EDS, and then the mechanism of crystal seeds in phosphate removal were also discussed preliminarily.
     The results showed that the performances of phosphater removal by quartz sand, ceramsite, steel slag and blast furnace slag were different, and steel slag was much better than blast furnace slag and that of quartz sand and ceramsite was very little.
     The phosphate remove efficiency of low P concentration wastewater by crystallization could be improved by increasing initial Ca/P、pH、P concentration and reaction time. When the Ca/P>2.0, the efficiency of phosphate removal increased slowly with increasing Ca/P. When the initial pH>9 or P concentration was higher than 10mg/L, the efficiency of phosphate removal was highly improved. When the crystallization was processed for more than 24 hours, the efficiency of phosphate removal was almost steady even if the reaction time was prolonged continually.
     In this experimental condition, the quartz sand and ceramsite could not promote the phosphate crystallization. But steel slag could remove the phosphate effectively. The results showed that the material which could release alkalinity and calcium can promote the phosphate crystallization and also the favorable basis material for prepare efficient crystal seed.
     The results showed that performances of phosphate removal by steel slag and blast furnace slag could improve by hydrothermal modification. So, the steel slag and blast furnace slag were crushed and grinded into smaller grain size firstly, and the granular steel slag and blast furnace slag with grain size at 3mm - 5mm could be obtained through sieveing. Then the powdery steel slag and blast furnace slag could be obtained through futher grinding, and the hybrid seed media with steel slag and hybrid seed media with blast furnace slag could be prepared by pelleting, molding and curing. The granular steel slag, granular blast furnace salg, hybrid seed media with steel slag and hybrid seed media with blast furnace slag as the basis material would be modified by hydrothermal method.
     The ability of phosphate removal by four basis materials could be improved by hydrothermal method, which was related to modification temperature, modicicaiton time, modification NaOH concentration and the ratio of liquid to solid. The efficiencies of phosphate removal by granular steel slag, granular blast furnace slag, hybrid seed media with steel slag and hybrid seed media with blast furnace slag were increased with increasing modification temperature, modicicaiton time, modification NaOH concentration and the ratio of liquid to solid. The optimum modification temperature, modicicaiton time, modification NaOH concentration and the ratio of liquid to solid of granular steel slag, granular blast furnace slag and hybrid seed media with blast furnace slag were 200℃, 24h, 6M, 1 and that of hybrid seed media with steel slag were 105℃, 6h, 6M, 1.
     A method based hydrothermal modification to prepare an efficient crystal seeds for phosphate removal was extracted. The ability to remove phosphate of modified granular steel slag, granular blast furnace slag, hybrid seed media with steel slag and hybrid seed media with blast furnace slag were 6.88mg/cm~3, 4.67mg/cm~3, 5.63mg/ cm3 and 4.19mg/cm~3, and the phosphate remove rates were increased by 60.8%, 45.2%, 54.8%, 39.9%, respectively.
     The character of phosphate removal by crystal seeds were bound up with the ability to release alkalinity and calcium. When the initial solution Ca/P=2 and pH=8.0, the alkalinity and calcium release rate of modified granular steel slag, granular blast furnace slag and hybrid seed media with blast furnace slag was very fast. However, the modified hybrid seed media with steel slag could be reused for longer times for phosphate removal.
     XRD and SEM-EDS patterns of the recovered products which generated from the phosphate removal by crystal seeds showed that the degree of calcium phosphate crystallization enhanced, the amount of crystal nucleus increased and the crystal was growing up with the increasing reaction time. Then the calcium phosphate precipitation turn into global hydroxyapatite crystal with poor crystallization, the Ca/P of which was 1.66, which was very close to purified HAP crystal. The hybrid seed media with steel slag prepared based on hydrothermal modified had amounts of C-S-H and Ca(OH)_2, which could provide alkalinity and calcium to promote the phosphate crystallized as the form of calcium phosphate, and the hydroxyapatite could be obtained by a futher convertion.
引文
[1]郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(上)[J].给水排水, 1998, 24(8): 69-73.
    [2]邵林广,游映玖,陶惠芳,等.控磷除磷在水体富营养化控制中的作用[J].环境与开发, 1999, 24(2): 19-20.
    [3]唐建国,林洁梅.化学除磷的设计计算[J].给水排水, 2000, 26(9): 17-21.
    [4]杨丽华,卓奋.湖泊水体磷污染及其防治对策[J]. 2004, 4(35): 35-38.
    [5] Celen I, Buchanan J R, Burns R T, et al. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure[J]. Water Research, 2007, 41(8): 1689-1696.
    [6]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理, 2003, 23(5): 18-20.
    [7]熊鸿斌.石灰法处理磷化废水工程实践[J].工业用水与废水, 1999, 30(2): 25-27.
    [8]陈乐荣,吴雪莉,陈粉珠.化学除磷的设计计算[J].废水处理, 2004, 4(35): 35-38.
    [9] Boisvert J P, Berrak A, Jolicoeur C, et al. Phosphate adsorption in flocculation processes of aluminium sulphate and polyaluminium– silicate–sulphate[J]. Water Research, 1997, 31(8): 1939–1946.
    [10] Fytianos K, Voudrias E, Raikos N. Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron[J]. Environmental. Pollution, 1998, 101(1): 123–130.
    [11] Yeoman T, Stephenson J N, Lester R. The removal of phosphorus during wastewater treatment: a review[J]. Environmental pollution. 1988, 49(3): 183– 233.
    [12] Wanner J. New process design for biological nutrient removal[J]. Water Science Technology, 1992, 25(4/5): 445-448.
    [13] Mino T, Liu W T, Kurisu F, et al. Modeling glycogenstorage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science Technology, 1995, 31(2): 25–34.
    [14] Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471.
    [15]邱立平,王广伟,张守彬,等.聚磷菌与聚糖菌种群分析及代谢机理研究进展[J].环境污染与防治, 2010, 32(10): 66-71.
    [16] Lee D S, Jeon C O, Park J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Water Research, 2001, 35(16):3968-3976.
    [17] Mura K, Miyairi A, Tanaka K. Full scale study of biological phosphorus removal processes[J]. Water science and technology, 1984, 17(6): 297-298.
    [18]张波.倒置A2/O工艺的氮磷脱除功能[J].环境工程, 1999. 17(2): 7-10.
    [19] Stander G J, Cillie G G, Hall E J, et al. Wastewater technologies in south Africa research and application[J]. Water Science and Technology, 1982, 14(8): 465-480.
    [20] Potgieter D, Evans B W. Biochemical changes associated with luxury phosphate uptake in a modified phoredox activated sludge system[J]. Water Science and Technology, 1982, 15(2): 105-115.
    [21]郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(下) [J].给水排水, 1998, 24(9): 68-71.
    [22]操家顺,杨雪冬, Mark V L. BCFS-生物除磷新工艺[J].中国给水排水, 2002, 18(3): 23-26.
    [23] Bortone G, Malaspina F, Stante L, et al. Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reactor with separated biofilm nitification[J]. Water Science Technology, 1994, 30(6): 303-313.
    [24] Wood N, Sock S, Daigger G. Phosphorus recovery technology modeling and feasibility evaluation for municipal wastewater treatment plants[J]. Enviromental Technology, 1999, 20(7): 663-679.
    [25]刘代俊,蒋绍志,罗洪波,等.我国磷矿资源贫化趋势及对策探讨[J].磷肥与复肥, 2005, 20(1): 5-9.
    [26]曹先军.我国磷资源合理开发利用的分析与建议[J].化工矿物与加工, 2005, (6): 1-4.
    [27] Kumashiro K, Ishiwater H, Nawamura Y. A pilot plant study on using seawater as a magnesium source for struvite precipitation[C]. In: The Second International Conference on the Recovery of Phosphorus from Sewage and Animal Wastes, the Netherlands: Noordwijkerhout, 2001.
    [28]丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备, 2002, 3(10): 23-27.
    [29] Urano K, Tachikawa H. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent.1. preparation method and adsorption capacity of a new adsorbent[J]. Industrial﹠Engineering Chemistry, 1991, 30(8): 1893-1896.
    [30] Urano K, Tachikawa H. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 2. adsorption rates and breakthrough curves[J]. Industrial﹠Engineering Chemistry, 1991, 30(8): 1897-1899.
    [31] Urano K, Tachikawa H, M Kitajima. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 3. desorption of phosphate and regeneration of adsorbent[J]. Industrial﹠Engineering Chemistry, 1991, 31(6): 1510-1513.
    [32] Urano K, Tachikawa H, Kitajima M. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 4. recovery of phosphate and aluminum from desorbing solution[J]. Industrial﹠Engineering Chemistry, 1991, 31(6): 1513-1515.
    [33] Doyle J D, Parsons S A. Struvite formation, control and recovery[J]. Water Research, 2002, 36(16): 3925-3940.
    [34]王广伟,邱立平,张守彬.废水除磷及磷回收研究进展[J].水处理技术, 2010, 36(3): 17-22.
    [35] Song Y H, Hermann H H, Erhard H. Effects of solution conditions on the precipitation of phosphate for recovery A thermodynamic evaluation[J]. Chemosphere, 2002, 48(10): 1029-1034.
    [36] Stratful I, Scrimshaw M D, Lester J N. Conditions influencing the precipitation of magnesium ammomium phosphate[J]. Water Research, 2001, 35(17): 4191-4199.
    [37]武汉大学主编.分析化学(第4版) [M].北京:高等教育出版社, 2000.
    [38] Celen I, Buchanan J R, Burns R T, et al. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure[J]. Water Research, 2007, 41(8): 1689-1696.
    [39] Bashan L E, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer(1997-2003) [J]. Water Research, 2004, 38(19): 4222-4246.
    [40] Jones V A. Calcium phosphate precipitation[C]. In: The second International Conference on the Recovery of phosphorus from Sewage and Animal Wastes, 2001.
    [41]郭杰.诱导结晶法处理含磷废水[D].湖南:湖南大学硕士论文, 2006.
    [42]赵珊茸.结晶学及矿物学[M].北京:高等教育出版社, 2004, 113-118.
    [43] Momberg G A, Oellermann R A. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa[J]. Water Science Technology, 1992, 26(5-6): 987-996.
    [44]愈英明.水分析化学[M].北京:冶金工业出版社, 1993.
    [45] Marti N, Bouzas A, Seco A, et al. Struvite precipitation assessment in anaerobic digestion processes[J]. Chemical Engineering Journal, 2008, 141(1-3): 67-74.
    [46] Ohlinger K N, Young T M, Schroeder, et al. Predicting struvite formation indigestion[J].Water Research, 1998, 32 (12): 3607-3614.
    [47] Jeanmaire N. Recycling of removed phosphorus-Analysis of the potential interest in wastewater treatement plants[C]. In: Paper of the 2nd International Conference on PhosphateRecovery for Recycling from sewage and animal wastes. Noordwijkerhout, the Netherlands, 2001.
    [48] Pastor L, Mangin D, Barat R, et al. A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process[J]. Bioresource Technology, 2008, 99(14): 6258-6291.
    [49]耿震,张林生,吴海锁,等.污水吹脱结晶法除磷机理及应用[J].污染防治技术, 2003, 26(4): 10-12.
    [50] Regy S, Mangin D, Klein J P, et al. Phosphate recovery by struvite precipitation in a stirred reactor[C]. In: Papter of the 2nd International Conference on Phosphate Recovery for Recyling from sewage and animal wastes. Noordwijkerhout, the Netherlands, 2001.
    [51] Koutsoukos P G. Current knowledge of calcium phosphate chemistry and in particular solid surface-water interface interaction[C]. In: Paper of the 2ndInternational Conference on Phosphate Recovery for Recycling from sewage and animal wastes. Noordwijkerhout, the Netherlands, 2001.
    [52] Momberg G A, Oellermann R A. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa[J]. Water Science Technology, 1992, 26(5-6): 987-996.
    [53]张春阳,刘建广,王爱华.结晶法除磷技术的发展与应用[J].节能技术, 2006, 24(1): 63-66.
    [54]王九思,陈学民,肖举强,等.水处理化学[J].北京:化工出版社, 2002.
    [55] Bellier N, Chazarenc F, Comeau Y. Phosphrous removal from wasterwater by mineral apatite[J]. Water Research, 2006, 40(15): 2965-2971.
    [56] Kim E H, Yim S B. Jung H C, et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material[J]. Journal of Hazardous Materials, 2006, 136(3): 690-697.
    [57]金爱芳,何江涛,郑红.雪硅钙石对生活污水中磷的去除试验[J].环境化学, 2008, 27(4): 472-475.
    [58] Moriyama K, Kojima T, Minawa Y, et al. Development of artificial seed crystal for crystallization of calcium phosphate[J]. Environmental Technology, 2001, 22(11):1245-1252.
    [59] Pastor L, Mangin D, Barat R, et al. A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process[J]. Bioresource Technology, 2008, 99(14): 6258-6291.
    [60] Montastruc L, C. Azzaro P, Biscans B, et al. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor[J]. Chemical Engineering Journal, 2003, 9(1): 41-50.
    [61] Boskey A L, Posner A S. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion[J]. The Journal of Physical Chemistry, 1973, 77(7): 2313-2317.
    [62] Liu C S, Huang Y, Shen W, et al. Kinetics of hydroxyapatite precipitation at pH10 to11[J]. Biomaterials, 2001, 22(4): 301-306.
    [63] Karapinar N, Hoffmann E, Hahn H H. P-recovery by secondary nucleation and growth of calcium phosphate on magnetite mineral[J]. Water Research, 2006, 40(6): 1210-1216.
    [64] Morse G K, Brett S W, Guy J N, et al. Review: Phosphorus removal and recovery technologies[J]. The science of the total environment, 1998, 212(1): 69-81.
    [65] Liberti L. Feasibility study on application of Rem Nut process to phosphate recovery from wasterwater[C]. In: Paper of the 2nd International Conference on Phosphate Recovery for Recycling from sewage and animal wastes. Noordwijkerhout, the Netherlands, 2001.
    [66] Battistoni P, Angelis De A, Pavan P, et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization[J]. Water Research, 2001, 35(9): 2167-2178.
    [67]疏型武.钢渣特性及其综合利用技术[J].钢铁技术, 2007(6): 48-51.
    [68]陈盛建,高宏亮.钢渣综合利用技术及展望[J].南方建材, 2004, 140(5): 1-4.
    [69] Shilton A N, Elmetri I, Drizo A, et al. Phosphorus removal by an‘active’slag filter-a decade of full scale experience[J]. Water Research, 2006, 40(1): 113-118.
    [70] Kostura B, KulveitováH, Le?ko J. Blast Furnace slags as sorbents of phosphate from water solutions[J]. Water Research, 2005, 39(9): 1795-1802.
    [71] Xiong J B, He Z L, Mahmood Q, et al. Phosphate removal from solution using steel slag through magnetic separation[J]. Journal of hazardous material, 2008, 152(1): 211-215.
    [72] Dinesh M, Charles U, Pittman J. Arsenic removal from water/wastewater using adsorbents-A critical review[J]. Journal of Hazardous Materials, 2007, 142(1-2): 1-53.
    [73] Jon P, Agnieszka R, Gunno R, et al. Phosphate removal by mineral-based sorbents used in filters for small-scal wastewater treatment[J]. Water Research, 2008(42): 189-197.
    [74]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版) [M].北京:中国环境科学出版社, 2002.
    [75] House W A. The physico-chemical conditions for the precipitation of phosphate with calcium[J]. Environmental technology, 1999, 20(7): 727-733.
    [76]陈瑶,李小明,曾光明,等.以磷酸钙盐的形式从污水处理厂回收磷的研究[J].环境科学与管理, 2006, 31(4): 110-112.
    [77]徐远辉,陆文雄,王秀娟,等.钢渣活性激发的研究现状与发展[J].上海大学学报(自然科学版), 2004, 10(1): 91-95.
    [78]徐彬,邓国柱,张天石,等.碱激发钢渣水泥研究[J].重庆环境科学, 1998, 20(6): 39-41.
    [79]张德成,谢英,丁铸,等.钢渣矿物水泥的发展与现状[J].山东建材, 1998,15(2): 12-15.
    [80]徐彬.图态碱组分碱矿渣水泥的研制及其水化机理和性能研究[D].北京:清华大学, 1995.
    [81]高树军,吴其胜,张少明.机械力学化学方法活化矿渣研究[J].南京工业大学学报, 2002, 24(6): 61-65.
    [82]肖琪仲,钱光人.钢渣唉高温高压下的水热反应[J].硅酸盐学报, 1999, 27(4): 427-436.
    [83] Soon J, Kazuki M. Reaction mechanisms of blast furnace slag in liquid and vapor dominated hydrothermal systems[J]. ISIJ International, 2007, 47(12): 1813-1817.
    [84] Wang G W, Qiu L P, Li Y B, et al. Comparative study of different activated slags on phosphate removal[C]. In: International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM 2011).Changsha: IEEE, 2011: 694-697.
    [85]朱苗勇.钢渣膨胀性的实验[J].环境工程, 2006, 24(6): 62-64.
    [86] Wang G W, Qiu L P, Zhang S B, et al. Hydrothermal modification of granular steel slag for phosphate removal[C]. In: The 5th International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2011). Wuhan:ICBBE, 2011: 316-319.
    [87] Moriyama K, Kojima T, Koga T, et al. Crystallisation process using calcium silicate hydrate for phosphorus removal[J]. Environmental Engineering Research, 2003, 40(1): 389-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700