用户名: 密码: 验证码:
BDE-209和镉单独及联合暴露对非洲爪蟾的甲状腺和生殖内分泌的干扰作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种溴系阻燃剂,多溴二苯醚(Polybrominated diphenyl ethers,PBDEs)在多种行业中广泛使用,目前已成为一类全球性持久性有机污染物。和其他重金属一样,镉污染具有来源广、残存时间长、有蓄积性、能沿食物链转移富集、污染后不易被发现并且难于恢复等特点。镉污染问题是目前环境污染问题的重点之一。动物研究显示PBDEs和镉都具有发育神经毒性、甲状腺干扰和生殖内分泌干扰作用。
     本论文首先介绍了目前PBDEs和镉生物毒性的研究进展,分析了目前研究中存在的几个问题;分析了非洲爪蟾在毒理学研究中的优势,详细介绍了非洲爪蟾在胚胎毒性、甲状腺干扰作用和生殖内分泌干扰作用研究中的应用。
     鉴于目前BDE-209和镉在环境介质中大量存在,但相关毒性数据尤其是联合暴露数据缺乏,本论文研究了环境相关剂量下BDE-209(100 ng/L)和镉(1μg/L)单独和联合暴露对非洲爪蟾的甲状腺和生殖内分泌干扰作用。
     本文研究得出的结果主要有:
     (1)环境相关剂量的BDE-209短期暴露不会影响非洲爪蟾蝌蚪的生长发育过程,也不会影响甲状腺激素T3诱导的非洲爪蟾蝌蚪变态发育过程;
     (2)环境相关剂量BDE-209和镉单独及联合长期暴露对非洲爪蟾具有一定的甲状腺干扰作用;
     (3)环境相关剂量BDE-209和镉单独及联合长期暴露不会明显影响雌性非洲爪蟾卵巢生长发育;但是镉和联合暴露对雄性非洲爪蟾精巢造成一定的损伤。
     实验结果提示,环境相关剂量的BDE-209和镉对非洲爪蟾有一定的甲状腺干扰、生殖内分泌干扰作用。此外,PBDEs和其他重金属联合暴露的毒理学效应和作用机制值得进一步深入研究。
PBDE (Polybrominated diphenyl ethers, PBDEs), one of brominated flame retardants, were widely used in a variety of industries. Nowadays, PBDEs have become a major persistent organic pollutant. Cadmium (Cd) contamination, like other heavy metal pollution, possesses the characteristics of abundance in resources, long retention time, cumulation, transfer and enrichment along the food chain, detection and restoration difficulty if the environment has been contaminated, etc. In animal experiments, PBDEs and Cd have been proven to cause developmental neurotoxicity, thyroid and reproductive endocrine disruption.
     In this thesis, first of all, the recent research progress in toxicology study on PBDEs and Cd is introduced and several problems in this research field are summarized. The advantages of Xenopus lavies in toxicology study are discussed, and introduced the application of X. laevis in embryo toxicity, thyroid disruption and reproductive endocrine disruption.
     Considering limited toxicity data on BDE-209 and Cd, which has been widely existed, the effects of thyroid and reproductive endocrine disruption of single and combined exposure to BDE-209 (100 ng/L) and Cd (1μg/L) at environmentally relevant doses in X. laevis were studied.
     The final conclusions of the research are the following:
     (1) The short-term exposure to BDE -209 at environmental related doses did not affect the growth process of Xenopus laevis and also did not affect the development induced by triiodothyronine (T3);
     (2) The long-term exposure to BDE -209 and/or Cd at environmental related doses had thyroid disrupting effects on X. laevis;
     (3) The long-term exposure to BDE -209 and/or Cd at environmental related doses did not significantly effect the development of ovaries. However, Cd single exposure and combined exposure cause certain damage on the testes of X. laevis.
     In summary, BDE-209 and Cd at environmentally relevant doses had thyroid and reproductive endocrine disruption on X. laevis. The toxical effects and mechanisms of PBDEs and heavy metal interaction remain to be furthered investigated.
引文
[1]刘汉霞,张庆华,江桂斌,等.多溴联苯醚及其环境问题[J].化学进展,17(3):554-562.
    [2]黄敏毅.镉对中国林蛙(Rana chensinesis)和黑斑蛙(Rana nigromaculata)幼体生长发育的影响[M].硕士学位论文,2005,陕西师范大学.
    [3] J(a|¨)rup Lars, ?kesson Agneta. Current status of cadmium as an environmental health problem [J]. Toxicol. Appl. Pharmacol., 2009,238(3):201-208.
    [4]持久性有机污染物审查委员会第二次会议工作报告增编商用五溴二苯醚风险简介, 2006.年11月6-10日,日内瓦
    [5] Stapleton HM, Dodder NG, Offenberg JH, et al. Polybrominated diphenyl ethers in house dust and clothes dryer lint[J]. Environmental Science and Technology, 2005, 39(4):925-931.
    [6] Luo Q,Cai ZW,Wong MH. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste [J]. Sci.Total Environ., 2007, 383:115–127.
    [7] Qin XF,Xia XJ,Li Y,et al. Ecotoxicological effects of mixed pollutants resulted from e-wastes recycling and bioaccumulation of polybrominated diphenyl ethers in Chinese loach (Misgurnus anguillicaudatus) [J]. J. Environ. Sci., 2009,21:1695-1701.
    [8]郭健.镉、铅对长江华溪蟹(Sinopotamon yangtsekiense)DNA损伤的影响[M].硕士学位论文,2005,山西大学.
    [9] Rayne S, Ikonomou MG, Antcliffe B. Rapidly increasing polybrominated diphenyl ether concentrations in the Columbia river system from 1992 to 2000 [J]. Environ. Sci. Tech., 2003, 37 (13): 2847-2854.
    [10] Hites RA. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations [J]. Environ. Sci. Technol., 2004, 38(4): 945-956.
    [11] Wilford Bryony H, Harner Tom, Zhu JP, et al. Passive sampling survey of polybrominated diphenylether flame retardants in indoor and outdoor air in Ottawa, Canada: implications for sources and exposure [J]. Environ. Sci. Technol., 2004, 38 (20): 5312-5318.
    [12] Wilford Bryony H, Shoeib Mahiba, Harner Tom, et al. Polybrominated diphenyl ethers in indoor dust in Ottawa, Canada: implications for sources and exposure [J]. Environ. Sci. Technol., 2005, 39(18):7027-7035.
    [13] Luckey F, Fowler B, Litten S. 2001.The second international workshop on brominated flame retardants Stockholm [J]. 2001, 309-311.
    [14] Leung AOW, Luksemburg WJ, Wongs AS, et al. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China [J]. Environ. Sci. Technol., 2007, 41(8):2730-2737.
    [15] Yang ZZ, Zhao XR, Zhao Q, et al. Polybrominated diphenyl ethers in leaves and soil from typical electronic waste polluted area in South China [J]. Bull. Environ. Contam. Toxicol., 2008, 80(4): 340-344.
    [16] Ueno D, Kajiwara N, Tanaka H, et al. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator [J]. Environ. Sci. Technol., 2004, 38: 2312–2316.
    [17] Bayen S, Thomas GO, Lee HK, et al. Occurrence of polychlorinated biphenyls and polybrominated diphenyl ethers in green mussels (Perna viridis) from Singapore, Southeast Asia [J]. Environ. Toxicol. Chem., 2003, 22: 2432-2437.
    [18]杨永亮,潘静,李悦,等.青岛近岸沉积物中持久性有机污染物多氯萘和多溴联苯醚[J].科学通报,2003,48(21):2244-2251.
    [19] Noren K, Meironyte D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20–30 years[J]. Chemosphere 2000, 40: 1111-1123.
    [20] Wijesekera RHC, Hunter S, Harrad S. Preliminary assessment of UK human exposure to polybrominated diphenyl ethers (PBDEs) [J]. Organohalog. Compd. 2002, 55: 239-242.
    [21] Jones-Otazo H, Clarke JP, Diamond ML, et al. Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs [J]. Environ. Sci. Technol.,2005, 39: 5121-5130.
    [22] Ryan JJ, Patry B. Body burdens and exposure from food for polybrominated diphenyl ethers (PBDEs) in Canada [J]. The Second International Workshop on Brominated Flame Retardants, pp. 103–106. Stockholm, Sweden, 2001, May 14-16.
    [23] Schecter A, Pavuk M, P?pke O, et al. Polybrominated diphenyl ethers (PBDEs) in US mothers’milk [J]. Environ. Health. Perspect., 2003, 111: 1723-1729.
    [24] Ayotte P, Muckle G, Jacobson JL, et al. Assessment of pre-and postnatal exposure to polychlorinated biphenyls: lessons from the Inuit cohort study [J]. Environ. Health. Perspect., 2003, 111(9): 1253-1258.
    [25] Soechitram SD, Athanasiadou M., Hovander L, et al. Fetal exposure to PCBs and their hydroxylated metabolites in a Dutch cohort [J]. Environ. Health. Perspect., 2004, 112(11): 1208-1212.
    [26] Branchi I, Capone F, Alleva E, et al. Polybrominated diphenyl ethers: neurobehavioral effects following developmental exposure [J]. Neurotoxicology, 2003, 24: 449-462.
    [27] Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? [J]. Environ. Health. Perspect., 2004, 112: 9-17.
    [28] McDonald TA. Polybrominated diphenylether levels among United States residents: daily intake and risk of harm to the developing brain reproductive organs [J]. Integr. Environ. Assess. Manag., 2005, 1: 343-354.
    [29] Eriksson P, Fischer C, Fredriksson A. Polybrominated diphenyl ethers, a group of brominated flame retardants, can interact with polychlorinated biphenyls in enhancing developmental neurobehavioral effects [J]. Toxicol. Sci., 2006, 94: 302-309.
    [30] Eriksson P, Fredriksson A. Neonatal exposure to 2, 2’, 5, 5’tetrachlorobiphenyl causes increased susceptibility in the cholinergic transmitter system at adult age [J]. Environ. Toxicol. Pharmacol., 2001, 1: 217-220.
    [31] Eriksson P, Jakobson E, Fredriksson A. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? [J]. Environ. Health. Perspect., 2001, 109(9): 903-908.
    [32] Eriksson P, Viberg H, Jakobsson E. A brominated flame retardant 2, 2’, 4, 4’, 5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development [J]. Toxicol. Sci., 2002, 67(1): 98-103.
    [33] Eriksson P, von Rosen D, Viberg H. Developmental toxicology in the neonatal mouse: the use of randomly selected individuals as statistical unit compared to the litter in mice neonatally exposed to PBDE 99 [J]. Toxicol. Sci., 2005, 84: 219-220.
    [34] Johansson N, Viberg H, Fredriksson A. Neonatal exposure to deca-brominated diphenyl ether (PBDE 209) causes dose-response changes in spontaneous behaviour and cholinergic susceptibility in adult mice [J]. Neurotoxicology, 2008, 29(6): 911-919.
    [35] Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behavior, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice [J]. Toxicol. Appl. Pharmacol., 2003a, 192(1): 95-106.
    [36] Viberg H, Fredriksson A, Jakobsson E, et al. Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development [J]. Toxicol. Sci., 2003b, 76(1): 112-120.
    [37] Viberg H, Johansson N, Fredriksson A, et al. Neonatal exposure to higher polybrominated diphenyl ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory functions of adult mice [J]. Toxicol. Sci., 2006, 92(1): 211–218.
    [38] Viberg H, Fredriksson A, Eriksson P. Investigations of strain and/or gender differences in developmental neurotoxic effects of polybrominated diphenyl ethers in mice [J]. Toxicol. Sci., 2004a, 81(2): 344-353.
    [39] Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to the brominated flame retardant 2,2’,4,4’,5 -pentabromodiphenyl ether decreases cholinergic nicotinic receptors in hippocampus and affects spontaneous behavior in the adult mouse [J]. Environ. Toxicol. Pharmacol., 2004b, 17(2): 61–65.
    [40] Dufault C, Poles G, Driscoll LL. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats [J]. Toxicol. Sci., 88(1): 172-180.
    [41] Yen PM. Physiological and molecular basis of thyroid hormone action [J]. Physiological Reviews2001, 81(3): 1097-1142.
    [42] Bernal J, Guadano-Ferraz A, Morte B. Perspectives in the study of thyroid hormone action on brain development and function [J]. Thyroid, 2003, 13(1): 1005-1012.
    [43] Meerts IA, van Zanden JJ, Luijks E.A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro [J]. Toxicol. Sci., 2000, 56(1): 95-104.
    [44] Hamers T, Kamstra JH, Sonneveld E, et al. In vitro profiling of the endocrine disrupting potency of brominated flame retardants [J]. Toxicol. Sci., 2006, 92(1): 157-173.
    [45] Zhou T, Ross DG, DeVito MJ, et al. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats [J]. Toxicol. Sci., 2001, 61(1): 76-82.
    [46] Zhou T, Taylor MM, DeVito M.J, et al. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption [J]. Toxicol. Sci., 2002, 66 (1): 105-116.
    [47] Lema SC, Dickey JT, Schultz IR, et al. Dietary exposure to 2, 2’, 4, 4’-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain [J]. Environ. Health. Perspect., 2008, 116(12): 1694-1699.
    [48] Marsh G, Bergman A, Bladh LG, et al. Synthesis of p-hydroxybromodiphenyl ethers and binding to the thyroid receptor [J]. Organohalogen Compounds 1998, 37: 305–308.
    [49] Kitamura S, Shinohara S, Iwase E, et al. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers [J]. J. Health Sci., 2008, 54: 607-614.
    [50] Gauger KJ, Giera S, Sharlin DS, et al. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells [J]. Environ. Health. Perspect., 2007, 115(11): 1623-1630.
    [51] Schriks M, Roessig JM, Murk AJ, et al. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay [J]. Environmental Toxicology and Pharmacology 2007, 23: 302-307.
    [52] Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominateddiphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells [J]. Environ. Health. Perspect., 2009, 117(8): 1210-1218.
    [53] Talsness CE, Kuriyama SN, Sterner-Kock A, et al. In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring [J]. Environ. Health. Perspect., 2008, 116(3): 308-314.
    [54] Stoker TE, Laws SC, Crofton KM, et al. Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols [J]. Toxicol. Sci., 2004, 78: 144-155.
    [55] Hallgren S, Darnerud PO. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects [J]. Toxicology, 2002, 177: 227-243.
    [56] Tomy GT, Palace VP, Halldorson T, et al. Bioaccumulation, biotransformation, and biochemicals effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush) [J]. Environ. Sci. Technol., 2004, 38(5): 1496-1504.
    [57] Ellis-Hutchings RG., Cherr GN, Hanna LA, et al. Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development [J]. Toxicol. Appl. Pharmacol., 2006, 215: 135-145.
    [58] Skarman E, Darnerud PO, Ohrvik H, et al. Reduced thyroxine levels in mice perinatally exposed to polybrominated diphenyl ethers [J]. Environ. Toxicol. Pharmacol., 2005, 19: 273-281.
    [59] Kuriyama SN, Talsness CE, Grote K, et al. Developmental exposure to low-dose PBDE-99: effects on male fertility and neurobehavior in rat offspring [J]. Environ. Health. Perspect., 2005, 113: 149-154.
    [60] Meerts I.A, Letcher RJ, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds [J]. Environ. Health. Perspect., 2001, 109: 399-407.
    [61] Dang V.H, Choi KC, Jeung E.B. Tetrabromodiphenyl ether (BDE 47) evokes estrogenicity and calbindin-D9k expression through an estrogen receptor-mediated pathway in the uterus of immaturerats [J]. Toxicol. Sci., 2007, 97(2): 504-511.
    [62] Mercado-Feliciano M, Bigsby RM. Hydroxylated metabolites of the polybrominated diphenyl ether mixture de-71 are weak estrogen receptor-αligands [J]. Environ. Health. Perspect., 2008a, 116: 1315-1321.
    [63] Mercado-Feliciano M, Bigsby RM. The polybrominated diphenyl ether mixture DE-71 is mildly estrogenic [J]. Environ. Health. Perspect., 2008b, 116(5): 605-611.
    [64]刘杰,刘亚平.慢性和急性染镉所致小鼠肾损伤的比较[J].中华劳动卫生职业病杂志, 1998,16(1): 9-11.
    [65] Kotsonis FN, Klaassen CD. Toxicity and distribution of cadmium administered to rats at sublethal doses. Toxicol. Appl. Pharmacol., 1977, 41: 667-680.
    [66]沈维干,季全兰,李朝军,等.镉对小鼠卵母细胞成熟和体外受精的影响[J].中国环境科学,1999, (6): 536-538.
    [67] Borzelleca NF. Short-Term Toxicity (1 and 10 Days) of Cadmium Chloride in Male and Female Rats: Gavage and Drinking Water [J]. J. Am. Coll. Toxicol., 1989, 8: 377-404.
    [68] Baranski B. Effect of cadmium on prenatal development and on tissue cadmium, copper, and zinc concentrations in rats [J]. J. Occp. Med., 1980, 22: 741-750.
    [69] Thatcher RW,Lester ML,McAlaster R, et al. Effects of low levels of cadmium and lead on cognitive functioning in children [J]. Arch. Environ. Health, 1982, 37: 159-166.
    [70] Ronco AM,Arguello G,Munoz L, et al. Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight [J]. Biometals, 2005, 18(3): 233-241.
    [71] Schettiul G. Brain solnatostatin:Receptor-coupled transducing mechanisms and role in cognitive functions [J]. Phammcol. Res., 1991, 23(3): 203-215.
    [72] Takenaka S,Oldiges H,Konig H, et al. Cytogenetic investigation in lymphocytes of people living in cadmium-polluted areas [J]. Mutat. Res., 1990, 241(3): 243-249.
    [73] Lemen RA, Lee JS, Wagoner J.K, et al. Cancer mortality among cadmium production workers. Ann. N. Y. Acad. Sci., 1976, 271: 273-279.
    [74] Rusch GM, O'Grodnick JS, Rinehart WE. Acute inhalation study in the rat of comparative uptake, distribution and excretion for different cadmium containing materials [J]. Am. Ind. Hyg. Assoc. J., 1986, 47(12): 754-763.
    [75] Myers JP, Zoeller RT, vom Saal FS. A clash of old and new scientific concepts in toxicity, with important implications for public health [J]. Environ. Health. Perspect., 2009, 117: 1652-1655.
    [76] Andrade AJM, Grande SW, Talsness CE, et al. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity [J]. Toxicology 2006, 227: 185-192.
    [77] Narita S, Goldblum RM, Watson CS, et al. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators [J]. Environ. Health. Perspect., 2007, 115: 48-52.
    [78] Birnbaum LS. Applying research to public health questions: timing and environmentally relevant dose [J]. Environ. Health. Perspect., 2009, 117: 1652-1655.
    [79] Lupton SJ, McGarrigle BP, Olson JR, et al. Human liver microsome-mediated metabolism of brominated diphenyl ethers 47, 99, and 153 and identification of their major metabolites [J]. Chem. Res. Toxicol., 2009, 22(11): 1802-1809.
    [80] Stapleton HM, Kelly SM, Pei R, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro [J]. Environ. Health. Perspect., 2009, 117(2): 197-202.
    [81] Qiu XH, Bigsby RM, Hites RA. Hydroxylated metabolites of polybrominated diphenyl ethers in human blood samples from the united states [J]. Environ. Health. Perspect., 2009, 117: 93-98.
    [82] Letcher RJ, Gebbink WA, Sonne C, et al. Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland [J]. Environ. Int., 2009, 35(8): 1118-1124.
    [83] Verreault J, Gabrielsen GW, Chu S, et al. Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears [J]. Environ. Sci. Technol., 2005, 39(16): 6021-6028.
    [84] Kelly B.C., Ikonomou M.G., Blair J.D. et al. Hydroxylated and methoxylated polybrominateddiphenyl ethers in a Canadian Arctic marine food web [J]. Environ. Sci. Technol., 2008, 42(19): 7069-7077.
    [85] Routti H., Letcher R.J., Chu S, et al. Polybrominated diphenyl ethers and their hydroxylated analogues in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea [J]. Environ. Sci. Technol., 2009, 43(10): 3494-3499.
    [86] Weijs L, Das K, Siebert U, et al. Concentrations of chlorinated and brominated contaminants and their metabolites in serum of harbour seals and harbour porpoises [J]. Environ. Int., 2009, 35(6): 842-850.
    [87] Lacorte S, Ikonomou MG. Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia [J]. Chemosphere, 2009, 74(3): 412-420.
    [88] Marchesini GR, Meimaridou A, Haasnoot W, et al. Biosensor discovery of thyroxine transport disrupting chemicals [J]. Toxicol. Appl. Pharmacol., 2008, 232(1): 150-160.
    [89] McKinney MA, De Guise S, Martineau D, et al. Biotransformation of polybrominated diphenyl ethers and polychlorinated biphenyls in beluga whale (Delphinapterus leucas) and rat mammalian model using an in vitro hepatic microsomal assay [J]. Aquat. Toxicol. 2006, 77(1): 87-97.
    [90] Cantón RF, Sanderson JT, Nijmeijer S, et al. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: a novel mechanism of action? [J]. Toxicol. Appl. Pharmacol., 2006, 216(2): 274-281.
    [91] He Y, Murphy MB, Yu RM, et al. Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line [J]. Toxicol. Lett., 2008, 176(3): 230-238.
    [92] Dingemans M.M., de Groot A., van Kleef R.G. et al. Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells [J]. Environ. Health Perspect., 2008, 116(5): 637-643.
    [93] Dingemans MM, Heusinkveld HJ, Bergman A, et al. Bromination pattern of hydroxylated metabolites of BDE-47 affects their potency to release calcium from intracellular stores in PC12 cells [J]. Environ. Health Perspect., 2010, 118(4): 519-525.
    [94] Morgan MK, Scheuerman PR, Bishop CS, et al. Teratogenic potential of atrazine and 2,4-D using FETAX [J]. J. Toxicol. Environ. Health., 1996, 48(2): 151-168.
    [95]秦晓飞,秦占芬,徐晓白.非洲爪蟾在生态毒理学研究中的应用(Ⅱ):甲状腺干扰作用评价[J].环境科学学报, 2009, 29 ( 8): 1589-1597.
    [96]秦占芬,李岩,秦晓飞,等.非洲爪蟾在生态毒理学研究中的应用(Ⅲ)-生殖内分泌干扰作用的评价.生态毒理学报, 2009, 4(3): 315-323.
    [97] Heimeier RA, Das B, Buchholz DR, et al. The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology, 2009, 150(6): 2964-2973.
    [98] Balch GC, Velez-Espino LA, Sweet C. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs). Chemosphere, 2006, 64(2): 328-338.
    [99]钱丽娟,郭素珍,曹庆珍,等.运用爪蟾变态实验检测镉的甲状腺激素干扰效应[J].华东师范大学学报(自然科学版),2010,2: 58-66.
    [100] Qin XF, Xia XJ, Yang ZZ, et al. Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis [J]. J. Environ. Sci., 2010, 22(5): 744-751.
    [101] Sharma B, Patino R. Exposure of Xenopus laevis tadpoles to cadmium reveals concentration dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity [J]. Toxicol. Sci., 2008, 105(1): 51-58.
    [102] Manzon RG, Denver RJ. Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: Negative feedback is functional throughout metamorphosis [J]. J. Endocrinol., 2004, 182: 273-285.
    [103] Opitz R, Lutza I, Nguyenb NH, et al. Analysis of thyroid hormone receptor A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action [J]. Toxicol. Appl. Pharmacol., 2006, 212(1): 1-13.
    [104]康玲,来茂德. BTEB/KLF9与基因转录调控[J].遗传(北京) 2007, 29(5): 515-522.
    [105] Lehigh Shirey L, Jelaso Langerveld A, Mihalko D, et al. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopuslaevis[J]. Environ. Res., 2006, 102(2): 205-214.
    [106] Kloas W, Lutz I, Einspanier R. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo [J]. Sci. Total Environ., 1999, 225(1-2): 59-68.
    [107] Kloas W. Amphibians as a model for the study of endocrine disruptors [J]. Int. Rev. Cytol., 2002, 216: 1-57.
    [108] Qin ZF, Zhou JM, Chu SG, et al. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis [J]. Environ. Health Perspect., 2003, 111(4): 553-556.
    [109] Qin ZF, Zhou JM, Cong L, et al. Potential ecotoxic effects of polychlorinated biphenyls on Xenopus laevis [J]. Environ. Toxicol. Chem., 2005, 24: 2573-2578.
    [110]李焕婷,秦占芬,秦晓飞,等.除草剂西玛津对非洲爪蟾生存和性腺发育的影响[J].生态毒理学报, 2008, 3(3): 280-285.
    [111] Hecker M,Murphy MB,Coady KK, et al. Terminology of gonadal anomalies in fish and amphibians resulting from chemical exposures [J]. 2006, Rev. Environ. Contam. Toxicol., 187: 103?131.
    [112]黄敏毅,张育辉,段仁燕.镉对黑斑蛙精巢组织结构的毒性效应[J].生物学杂志,2007,24(2):24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700