用户名: 密码: 验证码:
肝素酶HLA-A2.1限制性CTL表位的预测、鉴定及其抗肿瘤的免疫效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景和目的]
     生物治疗是继手术、放疗和化疗之后临床治疗恶性肿瘤的第四种治疗模式。随着对机体抗肿瘤免疫机制的深入研究,人们已经认识到诱发体内细胞毒T淋巴细胞(Cytotic T Lymphocyte,CTL)发挥抗瘤作用的并不是整个肿瘤抗原分子,而是与MHC分子结合的短肽即CTL表位(epitopes),因此,寻找特异性肿瘤抗原及其相应的CTL表位成为肿瘤免疫治疗的关键。树突状细胞(Dendritic cells,DC)作为体内最强大的抗原提呈细胞,是免疫应答过程的始动者和调节者。负载CTL表位的DC疫苗因其免疫原性好、副作用小、便于应用等优势而成为目前抗肿瘤治疗研究的一个热点。
     肝素酶(Heparanase,Hpa)是近年来新发现的一个肿瘤转移相关基因,在正常组织中仅低表达于淋巴细胞和骨髓等免疫组织,但在几乎所有的转移性恶性肿瘤细胞中普遍存在,而且表达的水平与肿瘤的转移、TMN分期等临床预后不良指标明显相关,肝素酶已成为中晚期肿瘤治疗的一个良好靶位。那么肝素酶能否作为一种肿瘤相关抗原用于肿瘤的免疫治疗?我们过去的研究表明,肝素酶全长基因负载的DC体外可以诱导肝素酶特异性CTL,对肝素酶阳性且MHC相匹配的胃癌细胞具有杀伤作用,而对肝素酶阳性但MHC不相匹配的胃癌细胞不具有杀伤效应,提示肝素酶氨基酸全长序列中一定存在能诱导特异性CTL反应的抗原表位。
     本研究的目的在于寻找存在于肝素酶全长序列中的能够有效激发机体抗肿瘤效应的CTL表位。鉴于HLA-A2.1是中国人群中最为常见的HLAⅠ类分子的型别,阳性率高达50%,因此鉴定肿瘤转移相关抗原Hpa的HLA-A2.1限制性CTL表位将会对中国人群中肝素酶表达阳性的恶性肿瘤提供免疫治疗的基础。
     [方法]
     1、采用超基序和量化基序相结合的方法对肝素酶的HLA-A2.1限制性CTL表位进行预测,并用分子模拟技术模拟表位肽与MHC分子结合的空间构象,分析结合参数以进一步提高预测的准确性,然后从结果中选取得分较高的5条肝素酶表位肽进行合成、纯化、分子量鉴定,利用T_2细胞的特点对合成的候选肽与HLA-A2.1分子的进行亲和力分析;采用标准~(51)Cr释放实验检测上述肝素酶表位肽负载DC后诱导的肝素酶特异性CTL对KATO-Ⅲ胃癌细胞的免疫杀伤效应,从而筛选出能够有效激活CTL反应的肝素酶抗原表位。
     2、采用密度梯度离心法分离并得到人外周血单个核细胞,利用rhGM-CSF、rhIL-4及rhTNF-α诱导扩增人成熟树突状细胞,并从形态学、细胞表面CD分子进行鉴定;用上述筛选的候选肽负载DC诱导产生特异性CTL,采用标准~(51)Cr释放实验检测肝素酶特异性CTL对KATO-Ⅲ胃癌细胞(Hpa~+,HLA-A2.1~+)、U-2OS骨肉瘤细胞(Hpa~+,HLA-A2.1~+)、SW480结肠癌细胞(Hpa~+,HLA-A2.1~+)、MCF-7乳腺癌细胞(Hpa~-,HLA-A2.1~+)、HepG2肝癌细胞(Hpa~+,HLA-A2.1~-)以及转染了肝素酶全长基因的MCF-7/Hpa乳腺癌细胞(Hpa~+,HLA-A2.1~+)和转染了HLA-A2.1基因的HepG2/HLA-A2.1肝癌细胞(Hpa~+,HLA-A2.1~+)的免疫杀伤效应;采用HLA-A2.1单克隆抗体封闭上述靶细胞的HLA-A2.1位点,或以CD8单克隆抗体封闭效应细胞的CD8位点,再用肝素酶表位特异性CTL杀伤KATO-Ⅲ胃癌细胞,以研究筛选的肝素酶表位是否受HLA-A2.1限制以及CTL效应细胞的来源;采用标准~(51)Cr释放实验研究肝素酶特异性CTL对自体淋巴细胞的免疫杀伤活性,以确定其可能存在的毒副作用;采用ELISPOT技术检测肝素酶特异的效应细胞IFN-γ释放情况。
     3、将上述筛选的肝素酶候选表位负载C57BL/6-Tg(HLA-A2.1)1Enge/J小鼠骨髓来源的DC(mDC)后,免疫小鼠三次,取其脾淋巴细胞作为效应细胞,采用~(51)Cr释放实验检测肝素酶特异性CTL对KATO-Ⅲ、U2OS、SW480、MCF-7、MCF-7/Hpa、HepG2、HepG2/HLA-A2.1细胞以及自体淋巴细胞和mDC的杀伤效应;ELISPOT技术检测肝素酶特异的效应细胞IFN-γ释放情况。
     [结果]
     1、采用超基序和量化基序方法联合预测出5条得分最高肝素酶表位肽:Hpa(525-533)(PAFSYSFFV)、Hpa(353-361)(PLLSDTFAA)、Hpa(277-285)(KMLKSFLKA)、Hpa(400-408)(PLPDYWLSL)、Hpa(405-413)(WLSLLFKKL);T_2细胞亲和力分析发现预测的5条多肽均能与T_2细胞有效结合;采用标准~(51)Cr释放实验检测上述肝素酶表位肽负载DC后诱导的肝素酶特异性CTL对KATO-Ⅲ胃癌细胞的免疫杀伤效应,结果表明,Hpa(525-533)、Hpa(277-285)、Hpa(405-413)诱导的CTL对KATO-Ⅲ胃癌细胞具有明显的杀伤效应,而Hpa(353-361)和Hpa(400-408)诱导的CTL对KATO-Ⅲ胃癌细胞的杀伤效应与阴性肽相同,提示Hpa(525-533)、Hpa(277-285)、Hpa(405-413)可能是肝素酶特异性抗原表位。
     2、采用密度梯度离心法分离HLA-A2.1阳性健康志愿者外周血中的单个核细胞(PBMC),用重组人细胞因子GM-CSF、IL-4及TNF-α联合诱导扩增,经形态学观察以及采用流式细胞术对细胞表面CD分子进行鉴定,成功制备了PBMC来源的成熟DC;采用标准~(51)Cr释放实验检测Hpa(525-533)、Hpa(277-285)、Hpa(405-413)表位负载DC后诱导的肝素酶特异性CTL对不同来源肿瘤细胞的免疫杀伤效应,结果表明,肝素酶特异性CTL对肝素酶阳性且HLA-A2.1阳性的KATO-Ⅲ、U2OS和SW480细胞具有明显的杀伤效应,而对肝素酶阴性但HLA-A2.1阳性的MCF-7细胞和肝素酶阳性但HLA-A2.1阴性的HepG2细胞均不具有杀伤效应,但对转染了肝素酶全长基因的MCF-7细胞(MCF-7/Hpa)和转染了HLA-A2.1全长基因的HepG2细胞(HepG2/HLA-A2.1)重新产生明显的免疫杀伤效应,提示肝素酶抗原表位诱导的CTL反应是肝素酶特异、且受HLA-A2.1限制;用HLA-A2.1和CD8分子的单抗分别封闭靶细胞表面的HLA-A2.1位点和效应细胞表面的CD分子后再进行杀伤实验,结果表明肝素酶特异性CTL对封闭了HLA-A2.1的KATO-Ⅲ细胞无明显杀伤效应,封闭了CD8的效应细胞对KATO-Ⅲ细胞亦无明显杀伤效应,进一步提示这种杀伤效应是HLA-A2.1限制,CTL效应细胞来源于CD8阳性的T淋巴细胞;采用标准~(51)Cr释放实验验检测上述肝素酶抗原表位诱导的肝素酶特异性CTL对自体淋巴细胞的免疫杀伤效应,结果表明肝素酶特异性CTL对自体淋巴细胞无明显杀伤效应,提示肝素酶多肽疫苗的安全性(表1);采用ELISPOT技术检测肝素酶特异性效应细胞IFN-γ的分泌能力,结果表明,肝素酶抗原表位能促进效应细胞IFN-γ的分泌。
     3、用上述肝素酶表位肽负载C57BL/6-Tg(HLA-A2.1)1Enge/J小鼠骨髓来源的DC(mDC),然后免疫小鼠三次,取其脾淋巴细胞作为效应细胞,以不同来源的多种肿瘤细胞作为靶细胞,用~(51)Cr释放法检测杀伤效应,实验结果表明,肝素酶表位特异性的CTL对肝素酶阳性且HLA-2阳性的KATO-Ⅲ、U2OS和SW480细胞具有明显的杀伤效应,而对肝素酶阴性但HLA-A2.1阳性的MCF-7细胞和肝素酶阳性但HLA-A2.1阴性的HepG2细胞均不具有杀伤效应,但对感染了肝素酶全长基因的重组腺病毒(rAd-Hpa)的MCF-7乳腺癌细胞(MCF-7/rAd-Hpa)和转染HLA-A2.1的HepG2/HLA-A2.1细胞亦重新产生明显的杀伤效应,对自体淋巴细胞和mDC亦无明显杀伤效应(表1)。ELISPOT技术检测肝素酶抗原表位能有效促进肝素酶特异性效应细胞分泌IFN-γ
     [结论]
     1、采用超基序和量化基序法并通过体外杀伤实验从肝素酶的全长氨基酸序列中筛选出了3条HLA-A2.1限制的CTL表位,即Hpa(525-533)(PAFSYSFFV)、Hpa(277-285)(KMLKSFLKA)、Hpa(405-413)(WLSLLFKKL),以上肝素酶抗原表位与德国学者的报道不同。
     2、从体外及动物实验二方面证实肝素酶抗原表位Hpa(525-533)、Hpa(277-285)、Hpa(405-413)可以诱导产生肝素酶特异性CTL,对肝素酶阳性且HLA-A2.1相匹配的肿瘤细胞具有很强的免疫杀伤活性,对肝素酶阴性或HLA-A2.1阴性的肿瘤细胞不具有杀伤效应,但对转染了肝素酶或HLA-A2.1的肿瘤细胞具有杀伤效应,提示肝素酶抗原表位诱导的CTL反应是肝素酶特异且受HLA-A2.1限制,肝素酶特异性CTL主要来源于CD8阳性T淋巴细胞。
     3、从体外及动物实验二方面证实肝素酶特异性CTL对自体淋巴细胞和/或DC无明显的免疫杀伤活性,提示肝素酶多肽疫苗临床应用的安全性。
     4、从体外及动物实验二方面证实肝素酶抗原表位Hpa(525-533)、Hpa(277-285)、Hpa(405-413)负载的DC可以促进效应细胞IFN-γ释放。
     以上研究表明,人肝素酶特异性抗原表位[Hpa(525-533)、Hpa(277-285)、Hpa(405-413)]不仅能激发机体特异性的抗肿瘤效应,而且还能诱导一个非特异性抗肿瘤的良性循环,这种肝素酶多肽疫苗具有广谱、高效、特异、安全的优点,为肝素酶表位多肽疫苗的临床应用提供了理论依据。
Backgrounds and objectives:
     The biotherapy for malignant tumors has become the forth treatment model followed surgery, chemical therapy, and radiotherapy. As the study on anti-tumor immunity and its mechanisms enhanced, researchers have recognized that the substance which induces the anti-tumor activities of CTL in human body is the CTL epitopes (the peptides binding with MHC) rather than the entire neoplasm antigen. Therefore, the key to tumor immunotherapy is to find the specific tumor antigen and its epitopes. Dendritic cell(DC), as the strongest antigen presenting cell, is a motivator and pacificator in the immune response. The DC vaccine loaded with CTL epitopes which has strong immunogenicity and little side effects therefor is becoming one of the hotest topics in the study of the malignant tumor therapy.
     Heparanase(Hpa) is an endo-β-D-glucuronidase that can cleave heparan sulfate proteoglycans(HSPG). It has been implicated in tumor angiogenesis and metastasis. Heparanase can be expressed in almost all the malignant tumors and it is associated with poor prognostic parameters, such as metastasis, TMN phase and so on. The broad expression of heparanase in advanced tumors indicates that heparanase can serve as a tumor associated antigen(TAA) in the immunotherapy of advanced tumors. Our previous study have demonstrated that the DC modified with full-length cDNA of heparanase could elicit heparanase-specific CTLs against HLA-matched and heparanase-positive gastric cancer cells in vitro, while there were no killing effects on autologous lymphocytes. These results demonstrated that there must be CTL epitopes which can induce a specific CTL in full-length amino acid sequence of heparanase. The objective of this study is mainly to find these CTL epitopes in heparanase with ability to induce heparanase-specific antitumor immune response. In view of the fact that HLA-A2.1 is the most common phenotype of MHC- I molecules in human, the prediction and identification of HLA A2.1-restricted CTL epitopes in heparanase antigen will provide foundation for immunotherapy for malignant tumor with the positive expression of heparanse.
     Methods:
     1.The HLA-A2.1-restricted CTL epitopes were predicted with the method of supermotif combined with quantitative motif. The molecular simulation was used to stimulate the space conformation of peptides binding with MHC molecule.The parameters were analyzed to further enhance the accuracy of prediction. Then the five heparanase peptides with the highest score were selected to be synthesized, purified and identified in terms of molecular weight. The analysis on the binding of the synthesized candidate peptides with MHC molecules was carried out based on the feature of T2 cells. The standard ~(51)Cr releasing assay was made to study the specific lysis of CTL induced by the above heparanase epitopes on KATO-Ⅲgastric cancer cells so as to screen out the epitopes which can activate the effective CTL response .
     2. The perpheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation. Mature dendritic cells were co-cultured with cytokine combinations with rhGM-CSF、rhIL-4 and rhTNF-α. It was identified by electron microscope and flow cytometry. Heparanase-specific CTLs were induced by DC pulsed with the above screened candidate peptides. Its tumor-killing activities to KATO-Ⅲgastric cancer cells (Hpa~+, HLA-A2.1~+), U-2OS osteosarcoma cells (Hpa~+, HLA-A2.1~+), colon cancer cells SW480(Hpa~+, HLA-A2.1~+), MCF-7 breast carcer cells(Hpa~-, HLA-A2.1~+), HepG2 hepatocellular carcinoma cells(Hpa~+, HLA-A2.1~-), MCF-7 cells transfected with the full-length cDNA of heparanae gene (MCF-7/Hpa) and HepG2 cells transfected with the plasmid of HLA-A2.1(HepG2/HLA-A2.1) were tested by standard ~(51)Cr releasing assay. In order to find out whether the screened heparanase epitopes were restricteded by HLA-A2.1 and the origin of the effector cells, we furtherly blocked the HLA-A2.1 sites of KATO-Ⅲtarget cells with HLA-A2.1 mono-antibody(mAb) and we blocked CD8 sites of effectors with CD8 mAb, then the specific lysis of effectors on KATO-Ⅲgastric cancer cells was detected. In addition, specific lysis of CTLs induced by the screened epitopes on autologous lymphocytes was involved to study the possible side effects. The IFN-γreleasing of effector cells was tested by ELISPOT.
     3. DCs derived from the C57BL/6-Tg(HLA-A2.1)1Enge/J mice's bone marrow(mDC) were loaded with the screened heparanase epitopes. We subcutaneously immunized mice by this DC vaccine for three times . The spleen lymphocyte was drawn as effector cells. The standard ~(51)Cr releasing assay was carried out to study the killing activity of the heparanase-specific CTLs on KATO-Ⅲ, U2OS, SW480, MCF-7, MCF-7/Hpa, HepG2 and HepG2/HLA-A2.1 tumor cell lines, as well as autologous lymphocytes and mDC. The IFN-γreleasing of effector cells was tested by ELISPOT.
     Results:
     1. The 5 highest score heparanase epitopes predicted by supermotif combined with quantitative motif were Hpa (525-533) (PAFSYSFFV), Hpa(353-361) (PLLSDTFAA), Hpa(277-285) (KMLKSFLKA), Hpa(400-408) (PLPDYWLSL) and Hpa(405-413) (WLSLLFKKL). Analysis on binding ability of the peptides indicated that they could be effectively binded with HLA-A2 on the surface of T2 cells. The standard ~(51)Cr releasing assay was made to study the specific lysis of CTL induced by the above screened epitopes on KATO-Ⅲgastric cancer cells. The results demonstrated that only Hpa(525-533), Hpa(277-285) and Hpa(405-413) could elicit potent killing effects to KATO-Ⅲgastric cancer cells, while the CTLs induced by Hpa(353-361) and Hpa(400-408) remained the same killing activities as negative peptides. These findings indicated that the Hpa(525-533)、Hpa(277-285)、Hpa(405-413) are probably the specific CTL epitopes of heparanase.
     2. The PBMCs from healthy donors with positive HLA-A2.1 were isolated by density gradient centrifugation and were co-cultured with cytokine combinations of GM-CSF、IL-4 and TNF-α. The DCs were furtherly verified by observation under optical and electron microscope, molecular markers detection through flow cytometry. CTLs primed by Hpa(525-533)、Hpa(277-285)、Hpa(405-413) exhibited potent specific lysis to KATO-Ⅲ, U2OS and SW480 cells which were heparanase and HLA-A2 positive measured by standard ~(51)Cr releasing assay. Meanwhile, there were no notable killing effects to heparanase negative MCF-7 cells and HLA-A2 negative HepG2 cells. But this specific lysis was re-occurred after MCF-7 cells transfected with full-length cDNA of heparanase or HepG2 cells transfected with the plasmid of HLA-A2. These results indicated that the immune response induced by heparanase epitopes was heparanase specific and restricted by HLA-A2.1. After blocking the HLA-A2.1 sites on the surface of target cells with HLA-A2.1 mAb or blocking the CD8 molecules on the surface of effectors cells with CD8 mAb, the specific killing effects of CTLs disappeared. These results furtherly indicated that effectors were HLA-A2.1 restricted and the source of effectors is raised from CD8~+ T lymphocytes. Athough autologous lymphocytes were both heparanase and HLA-A2 positive, no obvious lysis was found after co-cultured with heparanase-specific CTLs(Tab 1). ELISPOT test showed that the heparanase-specific epitopes were capable of enhancing IFN-γrelease effectively.
     3.Animal experiment showed that spleen lymphocytes from the transgenic mice (HLA-A2.1~+) immunized with peptides-pulsed mDC could effectively lyse KATO-Ⅲ, U2OS , SW480, MCF-7/Hpa and HepG2/HLA-A2 tumor cell lines, while there was not obvious lysis to tumor cell lines which were only heparanase or HLA-A2 positive ( MCF-7or HepG2 cells). Further study demonstrated that spleen lymphocyte from the transgenic mice could not lyse autologous lymphocytes or mDC, although they were both positive for heparanase and HLA-A2(Tab 1). The ELISPOT test showed that the heparanase epitopes were capable of enhancing IFN-γrelease effectively. The above results from animal experiment were consistent with the in vitro experiment results.
     Conclusions:
     1.There are 3 HLA-A2.1-restricted CTL epitopes screened out from the full-length amino acid sequence of heparanase using method of supermotif combined with quantitative motif. They are Hpa(525-533)(PAFSYSFFV), Hpa(277-285) (KMLKSFLKA) and Hpa(405-413)(WLSLLFKKL), which are different from German scientist's report.
     2.The experiments in vitro and in vivo prove that the above heparanase epitopes can effectively elicit heparanae-specific CTLs against various heparanase positive and HLA-A2 matched tumor cell lines, while there are no specific lysis on heparanase negative or HLA-A2 unmatched tumor cell lines. These data suggest that heparanase peptide vaccine can induce anti-tumor immunity against various tumor cells expressing heparanase in a HLA-A2 restricted fashion. The source of heparanase specific CTLs is raised from CD8~+ T lymphocyte.
     3.The in vitro and in vivo experiments prove that heparanase-specific CTLs have no killing effects on autologous lymphocytes and/or DCs, which suggests the heparanase epitope vaccines are probably safe for the future clinic application.
     4.The in vitro and in vivo experiments proved that heparanase epitopes can enhance IFN-γreleasing effectively, which indicates that heparanase epitopes not only elicit a specific immune response, but also elicit a non-specific immune response against tumors.
     In conclusion, the above studies show for the first time that the heparanase epitopes Hpa(525-533), Hpa(277-285) and Hpa(405-413) are capable of eliciting a specific anti-tumor immune response by heparanase-specific CTLs, as well as a non-specific anti-tumor immune response by enhancing cytokines releasing. These findings show that heparanase epitope vaccines have various advantages such as broad-spectrum, high-effect, high specificity and safety, which will provide theoretical evidence for their clinical application.
引文
1. Ueda Y, Itoh T, Nukaya I.Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived,HLA-A2.4-restricted CTL epitope:clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas Int J Oncol 2004;24(4):909-917
    2. Altfeld M, Allen TM, Kalife ET, Frahm N, Addo MM, Mothe BR, Rathod A, Reyor LL, Harlow J, Yu XG, Perkins B, Robinson LK, Sidney J, Alter G, Lichterfeld M, Sette A, Rosenberg ES, Goulder PJ, Brander C, Walker BD. The majority of currently circulating human immunodeficiency virus type 1 clade B viruses fail to prime cytotoxic T-lymphocyte responses against an otherwise immunodominant HLA-A2 -restricted epitope: implications for vaccine design.J Virol 2005;79 (8): 5000-5005
    3. Yamaguchi H, Tanaka F, Ohta M, Inoue H, Mori M. Identification of HLA-A2.4-restricted CTL epitope from cancer-testis antigen, NY-ESO-1, and induction of a specific antitumor immune response.Clin Cancer Res 2004;10(3): 890-896
    4. Fujiki F, Oka Y, Tsuboi A, Kawakami M, Kawakatsu M, Nakajima H, Elisseeva OA, Harada Y, Ito K, Li Z, Tatsumi N, Sakaguchi N, Fujioka T, Masuda T, Yasukawa M, Udaka K, Kawase I, Oji Y, Sugiyama H. Identification and characterization of a WT1 (Wilms Tumor Gene) protein-derived HLA-DRB1*0405-restricted 16-mer helper peptide that promotes the induction and activation of WT1 -specific cytotoxic T lymphocytes. J Immunother 2007;30(3):282-293
    5. Bhasin M,Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.J Biosci. 2007 ;32(1):31-42.
    6. DeGroot AS, Jesdale B, Martin W, Saint Aubin C, Sbai H, Bosma A, Lieberman J, Skowron G, Mansourati F, Mayer KH. Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach.Vaccine 2003;21(27-30):4486-4504
    7. Molinier Frenkel V, Popa N, Poulot V, Chaise C, Marquet J, Haioun C, Gaulard P, Farcet JP, Delfau Larue MH. Analysis of the intraclonal diversity of HLA-A0201-restricted T lymphocyte epitopes in follicular lymphoma idiotype.Br J Haematol 2006; 132(4): 459-468
    8. Thakar MR, Bhonge LS, Lakhashe SK, Shankarkumar U, Sane SS, Kulkarni SS,
    ??Mahajan BA, Paranjape RS. Cytolytic T lymphocytes (CTLs) from HIV-1 subtype C-infected Indian patients recognize CTL epitopes from a conserved immunodominant region of HIV-1 Gag and Nef. J Infect Dis 2005; 192(5): 749-759
    
    9. Roland Schroers, Lei Shen,l Lisa Rollins,Cliona M. Rooney, Kevin Slawin,Grete Sonderstrup, Xue F. Huang, Si-Yi Chen.Human Telomerase Reverse TranscriptaseSpecificT-Helper Responses Induced by Promiscuous Major Histocompatibility Complex Class II-Restricted Epitopes. Clin Cancer Res 2003; 9:4743-4755
    
    10. Madden DR.The three-dimensional structure of peptide-MHC complexes.Annu Rev Immunol 1995;13:587-622
    
    11.朱波,陈正堂,程晓明,林治华,吴玉章.肿瘤抗原TRAG-3 HLA-A2限制性CTL表位 的鉴定.免疫学杂志2004;20(6):411-415
    
    12. Schmitz M,Wehner R, Stevanovic S, Kiessling A, Rieger MA, Temme A, BachmannM, Rieber EP. Weigle B. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX II Cancer Letters 2007; 245(1-2):331-336
    
    13. Lalonde A, Avila-Carino J, Caruso M, de Campos-Lima PO. Rescue of the immunotherapeutic potential of a novel T cell epitope in the Epstein-Barr virus latent membrane protein 2. Virology 2007; 361(2):253-262
    
    14. Yokokawa J, Bera TK, Palena C, Cereda V, Remondo C, Gulley JL, Arlen PM, Pastan I, Schlom J, Tsang KY. Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4).Int J Cancer 2007; [Epub ahead of print]
    
    15. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999; 5:793-802
    
    16. Toyoshima M, Nakajima M. Human heparanase: purification, characterization, cloning, and expression. J Biol Chem 1999; 274:24153-24160
    
    17. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 5:803-809
    
    18. Kussie PH, Hulmes JD, Ludwig DL, Patel S, Navarro EC, Seddon AP, Giorgio NA,??Bohlen P. Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 1999;261(1): 183-187 19. Eccles SA. Heparanase:breaking down barriers in tumors. Nat Med 1999;5:735-736
    
    20.陈陵,杨仕明,房殿春.王东旭.肝素酶:抗肿瘤转移的新靶点.世界华人消化杂志 2004;12(2):439-442
    
    21.蔡永国,房殿春,杨仕明,罗元辉,杨孟华,王东旭.肝素酶mRNA在胃癌组织中的表达 及其与c-met表达的关系.中华医学杂志2004;84(12):974-978
    
    22.蔡永国,房殿春,陈陵,王东旭,罗元辉,汤旭东,陈婷,杨仕明.肝素酶基因修饰的树突状 细胞疫苗对胃癌细胞的免疫效应研究.中华医学杂志2006;86(44):3122-3127
    
    23. Nora Sommerfeldt, Philipp Beckhove, Yingzi Ge, Florian Schutz, Carmen Choi,Mariana Bucur, Christoph Domschke, Christof Sohn, Andreas Schneeweis, Joachim Rom, Dirk Pollmann, Dagmar Leucht, Israel Vlodavsky, and Volker Schirrmacher. Heparanase: A New Metastasis-Associated Antigen Recognized in Breast Cancer Patients by Spontaneously Induced Memory T Lymphocytes. Cancer Res 2006;66(15):7716-7123
    
    24.周光炎,范丽安.HLA:新的进展和新的起点-记第九届国际组织相容性会议上海免 疫学杂志1996;16(6):321-324
    
    25. Sidney J, del Guercio MF, Southwood S, Appella E, Rammensee HG, Falk K, Rotzschke O, Takiguchi M, Kubo RT.Several HLA alleles share overlapping peptide specificities. J Immunol 1995; 154(1): 247-259
    
    26. Bamford AI, Douglas A, Friede T, et al. Peptide motif of a cattle MHC class I molecule. Immunol Lett 1995; 45(1-2): 129-136
    
    27. Sidney J, Grey HM, Kubo RT, Sette A. Practical biochemical and evolutionary implications of discovery of HLA class I supermotifs. Immunol Today 1996; 17 (6):261-266
    
    28. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains..J Immunol 1994;152(1):163-175
    
    29.贾正才,吴玉章,万瑛.肿瘤抗原MAGE-3 CTL预测表位的计算机分子模拟研究.第三 军医大学学报2000;22(10):937-939
    
    30.贾正才,吴玉章,周伟.肿瘤抗原MAGE-3预测CTL表位的合成与鉴定.第三军医大学??学报2000;22(10):940-942
    
    31. Nijman HW, Houbiers JG, Vierboom MP, van der Burg SH, Drijfhout JW, D'Amaro J, Kenemans P, Melief CJ, Kast WM. Identification of peptide sequences that potentially trigger HLA-A2-restricted cytotoxic T lymPhocytes. Eur J Immunol 1993;23 (6):1215-1219
    
    32. Cho HI, Kim HJ, Oh ST, Kim TG. In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2003,22(2):224-236
    
    33.石统东,吴玉章.CTL活性检测与监测.第三军医大学学报2000;22(10):1003-1007
    
    34. Wierecky J, Mueller M, Brossart P. Dendritic cell-based immunotherapy targeting MUC-1.Cancer Immunol Immunother 2006;55(l):63-67
    
    35. Li G, Hundemer M, Wolfrum S, Ho AD, Goldschmidt H, Witzens-Harig M. Identification and characterization of HLA-class-I-restricted T-cell epitopes in the putative tumor-associated antigens P21-activated serin kinase 2 (PAK2) and cyclin-dependent kinase inhibitor 1A (CDKN1A). Ann Hematol 2006; 85 (9):583-590
    
    36. Kelly T, Miao HQ, Yang Y, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD.High heparanase activity in multipe myeloma is associated with elevated microvessel density .CancerRres 2003;63(24)8749-8756
    
    37.蔡永国,房殿春,杨仕明,罗元辉,杨孟华,王东旭.肝素酶mRNA在胃癌组织中的表达 及其与c-met表达的关系.中华医学杂志2004;84:974-978
    
    38. Wang Z, Xu H, Jiang L, Zhou X, Lu C, Zhang X. Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol 2005; 18:205-211
    
    39. El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res 2001; 7: 1299-1305
    
    40.杨彦,崔明,陈陵,段体德.反义肝素酶基因对胰腺癌细胞体外增殖和侵袭的抑制 作用.世界华人消化杂志2006;14:2493-2498
    
    41. Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K. Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Br J Cancer 2002; 86: 1270-1275
    42. Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA. Human heparanase-1 gene expression in pancreatic adenocarcinoma. J Gastrointest Surg 2002; 6: 167-172
    43. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 5:803-809
    44. Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R, Hazan R, Peretz T, Vlodavsky I, Abramovitch R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 2006; 118: 1609-1617
    45. Ginath S, Menczer J, Friedmann Y, Aingorn H, Aviv A, Tajima K, Dantes A, Glezerman M, Vlodavsky I, Amsterdam A. Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol 2001; 18: 1133-1144
    46. Bitan M, Polliack A, Zecchina G, Nagler A, Friedmann Y, Nadav L, Deutsch V, Pecker I, Eldor A, Vlodavsky I, Katz BZ. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 2002; 30: 34-41
    47. Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA, Terashima M, Fujime M, Igawa M, Dahiya R. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res 2005;11: 1028-1036
    48. Shafat I, Zcharia E, Nisman B, Nadir Y, Nakhoul F, Vlodavsky I, Dan N. An ELISA method for the detection and quantification of human heparanase. Biochem Biophys Res Commun 2006; 341: 958-963
    49. Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M. Expression of three extracellular matrix degradative enzymes in bladder cancer. Int J Cancer 2001; 95: 295-301
    50. Pikas DS, Li JP, Vlodavsky I, Lindahl U. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998; 273: 18770-18777
    51. Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V. Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 1983; 43: 2704-2711
    
    
    52. Kurokawa H, Katsube K, Podyma KA, Ikuta M, Iseki H, Nakajima M, Akashi T, Omura K, Takagi M, Yanagishita M. Heparanase and tumor invasion patterns in human oral squamous cell carcinoma xenografts. Cancer Sci 2003; 94: 277-285
    
    53. Quiros RM, Kim AW, Maxhimer J, Gattuso P, Xu X, Prinz RA. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res 2002; 108: 44-50
    
    54. Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38: 2018-2039
    
    55. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 1999; 59: 3433-3441
    
    56. Bentolila A, Vlodavsky I, Ishai-Michaeli R, Kovalchuk O, Haloun C, Domb AJ. Poly(N-acryl amino acids): a new class of biologically active polyanions. J Med Chem 2000; 43: 2591-2600
    
    57.杨仕明,汤旭东,陈婷,熊震,陈陵,蔡永国,房殿春.肝素酶:一种新的广谱的肿瘤转移相 关抗原在中晚期肿瘤免疫治疗中的作用研究进展.世界华人消化杂志 2007;15(8):849-854
    
    58. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 5: 803-809
    
    59. Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci 2000; 25:349-351
    
    60. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001; 1471: M99-108
    
    61. McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, Hircock M, Patel S, Barry E, Stubberfield C, Terrett J, Page M. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 2000; 276: 1170-1177
    
    62. Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase.Cancer Res 2000;60:4767-4770
    
    63. Gohji K, Katsuoka Y, Okamoto M, Kamidono S, Kitazawa S, Toyoshima M, Dong J, Nakajima M. Human heparanase: roles in invasion and metastasis of cancer. Hinyokika Kiyo 2000;46:757-762
    
    64.蔡永国,房殿春,杨仕明,罗元辉,杨孟华,王东旭.人肝素酶基因正反义腺病毒 表达载体的构建及鉴定.世界华人消化杂志2004;12:336-338
    
    65.陈陵,蔡永国,郑兴春,杨仕明,房殿春,罗元辉,王东旭.负载肝素酶复制缺陷型 腺病毒的包装及鉴定.解放军医学杂志2006;31:38-41
    
    66.蔡永国,房殿春,陈陵,王东旭,罗元辉,汤旭东,陈婷,杨仕明.肝素酶基因修饰 的树突状细胞疫苗对胃癌细胞的免疫效应研究.中华医学杂志2006;86: 3122-3127
    
    67. Rotzschke O, Falk K, Stevanovic S, Jung G, Walden P, Rammensee HG. Exact prediction of a natural T cell epitope.Eur J Immunol 1991 ;21( 11):2891-2894
    
    68. Madden DR.The three-dimensional structure of peptide-MHC complexes.Annu Rev Immunol 1995;13:587-622
    
    69. Lim JS, Kim S, Lee HG, Lee Ky, Kwon TJ, Kim K.Selection of peptides that bind to the HLA-A2 molecule by molecular modelling.Mol Immunol 1996;33(2): 221-230
    
    1. Young JW, Merad M, Hart DN. Dendritic cells in transplantation and immune-based therapies.Biol Blood Marrow Transplant 2007;13(l):23-32
    
    2. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002 ; 82(1): 97-130
    
    3. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15(2): 138-147
    
    4. Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. Immunol 2000; 165(10): 5713-5719
    
    5. Decker WK, Xing D, Shpall EJ. Dendritic cell immunotherapy for the treatment of neoplastic disease. Biol Blood Marrow Transplant 2006; 12: 113-125
    
    6. Smithers M, O'Connell K, MacFadyen S, Chambers M, Greenwood K, Boyce A, Abdul Jabbar I, Barker K, Grimmett K Walpole E, Thomas R. Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunol Immunother 2003; 52(1): 41-52
    
    7. Marten A, Flieger D, Renoth S,Weineck S, Albers P, Compes M, Schottker B, Ziske C, Engelhart S, HanflandP, Krizek L, Faber C, von-Ruecker A, MullerS, Sauerbruch T, Schmidt Wolf IG. Therapeutic vaccination against metastatic renal cell carcinoma by autologous dendritic cells: preclinical results and outcome of a first??clinical phase I/II trial. Cancer Immunol Immunother 2002;51(11-12): 637-644
    
    8. Yu JS, Luptrawan A, Black KL, Liu G. Mahaley Clinical Research Award: chemosensitization of glioma through dendritic cell vaccination. Clin Neurosurg 2006;53:345-351
    
    9. Houtenbos I,Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology 2006;211(6-8):677-685
    
    10. Adam C,Mysliwietz J,Mocikat R. Specific targeting of whole lymphoma cells to dendritic cells ex vivo provides a potent antitumor vaccine. Transl Med 2007 14;5:16
    
    11. Tuettenberg A, Schmitt E, Knop J, Jonuleit H. Dendritic cell-based immunotherapy of malignant melanoma: success and limitations. Dtsch Dermatol Ges 2007;5(3): 190-196
    
    12. Tamir A, Basagila E, Kagahzian A, Jiao L, Jensen S, Nicholls J, Tate P, Stamp G, Farzaneh F, Harrison P, Stauss H, George AJ, Habib N, Lechler RI, Lombardi G. Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors.Cancer Immunol Immunother 2007 Feb 23; [Epub ahead of print]
    
    13. Ranieri E, Gigante M, Storkus WJ, Gesualdo L. Translational mini-review series on vaccines: Dendritic cell-based vaccines in renal cancer.Clin Exp Immunol 2007;147(3):395-400
    
    14. Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomed Pharmacother. 2007 Feb 27; [Epub ahead of print]
    
    15. Ye Z, Chen Z, Sami A, El-Gayed A, Xiang J. Human dendritic cells engineered to express alpha tumor necrosis factor maintain cellular maturation and T-cell stimulation capacity.Cancer Biother Radiopharm 2006;21(6):613-622
    
    16. Itoh T, Ueda Y, Kawashima I, Nukaya I, Fujiwara H, Fuji N, Yamashita T, Yoshimura T, Okugawa K, Iwasaki T, Ideno M, Takesako K, Mitsuhashi M, Orita K, Yamagishi H. Immunotherapy of solid cancer using dendritic cells pulsed with HLA-A24-restricted peptide of carcinoembryonic antigen. Cancer Immunol Immunother 2002; 51: 99-106
    
    17.陶忠芬;蔡永国;杨仕明;可金星;黄文琪;肖桃元;房殿春.树突状细胞扫描电镜样本制??备方法.第三军医大学学报2005;27(12):1299-1300
    
    18. Frolkis M, Fischer MB. Wang Z, Lebkowski JS, Chiu CP, Majumdar A. Dendritic cells reconstituted with human telomerase gene induces potent cytotoxic T-cell response against different types of tumors. Cancer gene therapy 2003,10:239-249
    
    19. Cho HI, Kim HJ, Oh ST, Kim TG In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2003;22:224-236
    
    20. Chen L, Liang GP, Tang XD, Chen T, Cai YG, Fang DC, Yu ST, Luo YH, Yang SM. In vitro anti-tumor immune response induced by dendritic cells transfected with hTERT recombinant adenovirus.Biochem Biophys Res Commun 2006; 351 (4):927-934
    
    21.F.奥斯伯,R.布伦特,R.E.金斯等.颜子颖,王海林译.精编分子生物学指南.科学出 版社,北京,1998.
    
    22.金冬雁,黎孟枫等编译.分子克隆实验指南 第二版,科学出版社,北京,1993年.
    
    23.卢圣栋 主编.现代分子生物学实验技术.高等教育出版社,北京,1993年.
    
    24.胡福泉 主编.现代基因操作技术.人民军医出版社,北京,2000年.
    
    25.李永明,赵玉琪等主编.实验分子生物学方法手册.科学出版社,北京,1998年.
    
    26. Nora Sommerfeldt, Philipp Beckhove, Yingzi Ge, Florian Schutz, Carmen Choi,Mariana Bucur, Christoph Domschke, Christof Sohn, Andreas Schneeweis, Joachim Rom, Dirk Pollmann, Dagmar Leucht, Israel Vlodavsky, and Volker Schirrmacher. Heparanase: A New Metastasis-Associated Antigen Recognized in Breast Cancer Patients by Spontaneously Induced Memory T Lymphocytes. Cancer Res 2006;66(15):7716-7123
    
    27.陈陵,李志宏,杨仕明,蔡永国,房殿春,罗元辉,王东旭.人肝素酶基因正反义荧光真核 表达载体的构建及肝癌细胞转染.第三军医大学学报2006;28(1):47-49
    
    28. Sun Y, Song M, Stevanovic S, Jankowiak C, Paschen A, Rammensee HG, Schadendorf D. Identification of a new HLA-A(~*)0201-restricted T-cell epitope from the tyrosinase-related protein 2 (TRP2) melanoma antigen.Int J Cancer 2000; 87:399-404.
    
    29.蔡文琴,王伯云.主编.实用免疫细胞化学与核酸分子杂交技术[M].第一版,成都. 成都科学技术出版社,1994,406-408
    
    30.石统东,吴玉章.CTL活性检测与监测.第三军医大学学报,2000,22(10):??1003-1007
    
    31. Zhu B, Chen Z, Cheng X, Lin Z, Guo J, Jia Z, Zou L, Wang Z, Hu Y, Wang D, Wu Y. Identification of HLA-A~*0201 -restricted cytotoxic T lymphocyte epitope from TRAG-3 antigen.Clin Cancer Res. 2003;9(5): 1850-1857.
    
    32. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001; 1471: M99-108
    
    33.蔡永国;房殿春;杨仕明;罗元辉;陈陵;杨孟华;王东旭.肝素酶的表达在良、恶 性腹水鉴别诊断中的作用研究.中华肝脏病学杂志2005;13(5):384-385
    
    34. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O.Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells.J Immunol Methods 1988; 115(2): 275-287
    
    35. Versteegen JM, Logtenberg T, Ballieux RE.Enumeration of IFN-gamma-producing human lymphocytes by spot-ELISA. A method to detect lymphokine-producing lymphocytes at the single-cell level.J Immunol Methods 1988;111(1):25-29
    
    36. Scheibenbogen C, Lee KH, Mayer S, Stevanovic S, Moebius U, Herr W, Rammensee HG, Keilholz U.A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for HLA class I-binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients.Clin Cancer Res 1997; 3(2):221-226
    
    37. Schmittel A, Keilholz U, Scheibenbogen C.Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J Immunol Methods. 1997; 210(2): 167-174.
    
    38. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. Exp Med 1973; 137(5): 1142-1162.
    
    39. Gansuvd B, Hagihara M, Higuchi A, Ueda Y, Tazume K, Tsuchiya T, Munkhtuvshin N, Kato S, Hotta T. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR: synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol 2003; 64(4): 427-439
    
    40. Jang MH, Kweon MN, Hiroi T, Yamamoto M, Takahashi I, Kiyono H. Induction of cytotoxic T lymphocyte responses by cholera toxin-treated bone marrow-derived dendritic cells. Vaccine 2003 ;21(15): 1613-1619
    
    41. Radcliff FJ, Caruso DA, Koina C, Riordan MJ, Roberts AW, Tang ML, Baum CM, Woulfe SL, Ashley DM. Mobilization of dendritic cells in cancer patients treated with granulocyte colony-stimulating factor and chemotherapy. Br J Haematol 2002; 119( 1): 204-211
    
    42.朱学军,曹雪涛,于益芝.人外周血树突状细胞的体外扩增及鉴定.中国肿瘤生物 治疗杂志1997;4(4):302-306
    
    43. Hirao M, Onai N, Hiroishi K, Watkins SC; Matsushima K; Robbins PD, Lotze MT; Tahara H. CC chemokine receptor-7 on dendritic cells is induced after interaction with apop totic tumor cells: critical role in migration from the tumor site to draining lymph nodes . Cancer Res 2000, 60 (8) : 2209 - 2217.
    
    44.王全楚,冯志华,周永兴,聂青和,郝春秋,王九平.小鼠骨髓树状细胞改良培养及体外 生物学特性的比较.世界华人消化杂志,2003;11(2):219-223.
    
    45.曹雪涛.树突状细胞的基础与临床研究新进展.中国免疫学杂志,1998;14(3):161-168.
    
    46. Reinhard G, Marten A, Kiske SM, Feil F, Bieber T, Schmidt-wolf IGH. Generation of dendritic cell-based vaccines for cancer therapy. British J of Cancer 2002, 86(10): 1529-1533.
    
    47.潘春华,罗荣成.树突状细胞疫苗在肿瘤免疫治疗领域的研究现状.中国免疫学杂 志,2003,19(10):732-735.
    
    48. Thomas Kaskel AK, Zeiser R,Jochim R,Robbel C, Schultze Seemann W,Waller CF, Veelken H.Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival.Int J Cancer 2006; 119(10):2428-2434
    
    49. PeterMulders, Kaboo R, Hinkel A, Frand S, Kiertscher S, Roth MD, deKernion J, Figlin R, Belldegrun A. Presentation of renal tumor antigens by human dendritic cells actives tumor-infiltrating lymphocytes against autologous tumor: imp lications for live kidney cancer vaccines. Clin Cancer Res 1999,2(9):445-454
    
    50. Welt S , Ritter G, Williams C J, Cohen LS, Junqbluth A, Richards EA, Old LJ, Kemeny NE. Preliminary report of a phase I study of combination chemot herapy and humanized A33 antibody immunot herapy in patient s wit h advanced colorectal cancer. Clin Cancer Res 2003 ;9 (4): 1347
    
    51. O'Rourke MG,Johnson M,Lanagan C , See J, Yang J, Bell JR, Slater GJ, Kerr BM,??Crowe B, Purdie DM, Elliott SL, Ellem KA, Schmid CW. Durable complete clinical responses in a phase Ⅰ/Ⅱ trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 2003;52 (6) :387-395
    
    52. Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, Fuji N, Fujiwara H, Ochiai T, Itoi H, Sonoyama T, Hagiwara A; Takesako,-K, Yamagishi H.Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A2.4-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas Int J Oncol 2004;24(4) :909-917
    
    53. Basta S,Alatery A. The cross-priming pathway: a portrait of an intricate immune system. Scand J Immunol 2007;65(4):311-319
    
    54. Matera L,Forno S,Galetto A,Moro F,Garetto S,Mussa A. Increased expression of HSP70 by colon cancer cells is not always associated with access to the dendritic cell cross-presentation pathway. Cell Mol Biol Lett 2007;12(2):268-279
    
    55. Schmidt Weber CB, Blaser K. Immunological mechanisms in specific immunotherapy. Springer Semin Immunopathol 2004; 25(3-4): 377-390
    
    56. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003; 8(3):223-246
    
    57. Scheibenbogen C, Romero P, Rivoltini L, Herr W, Schmittel A, Cerottini JC, Woelfel T, Eggermont AM,Keilholz U.Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial.J Immunol Methods 2000;244(1-2):81-89
    
    58. Miyahira Y, Murata K, Rodriguez D, Rodriguez JR,Esteban M,Rodrigues MM, Zavala F.Quantification of antigen specific CD8+ T cells using an ELISPOT assay.J Immunol Methods 1995;181(1):45-54
    
    59. Cui Y, Chang LJ.Computer-assisted, quantitative cytokine enzyme-linked immunospot analysis of human immune effector cell function.Biotechniques 1997; 22(6): 1146-1149
    
    60.蔡永国.肝素酶基因修饰的树突状细胞疫苗对胃癌细胞的免疫效应研究.博士毕业 论文.2005;75-76.
    
    61.陈陵.hTERT基因修饰树突状细胞对肿瘤细胞的免疫效应研究.硕士毕业论 文,2006;106-107.
    1. McCarthy C, Youde SJ, Man S. Definition of an HPV18/45 cross-reactive human T-cell epitope after DNA immunisation of HLA-A2/KB transgenic mice. Int J Cancer 2006; 118(10):2514-2521
    2. Ramirez F, Ghani Y, Gao L, Stauss H. Dendritic cell immunization induces Nonprotective WT1-specific CTL responses in mouse. J Immunother 2007;30 (2): 140-149.
    3. Otahal P, SchellTD, Hutchinson SC, KnowlesBB, Tevethia SS.Early immunization induces persistent tumor-infiltrating CD8+ T cells against an immunodominant epitope and promotes lifelong control of pancreatic tumor progression in SV40 tumor antigen transgenic mice. J Immunol 2006; 177(5): 3089- 3099
    4. Kallinteris NL, Wu S, Lu X, Humphreys RE, von Hofe E, Xu M. Enhanced CD4+ T-cell response in DR4-transgenic mice to a hybrid peptide linking the Ii-Key segment of the invariant chain to the melanoma gp 100(48-58) MHC class II epitope.J Immunother 2005; 28(4):352-358
    5. Houtenbos I,Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology 2006;211(6-8):677-685
    6. Adam C,Mysliwietz J,Mocikat R. Specific targeting of whole lymphoma cells to dendritic cells ex vivo provides a potent antitumor vaccine. Transl Med 2007 14;5:16
    7. Mohmmad Abdul H, Sultana R, Keller JN, St Clair DK, Markesbery WR, Butterfield DA. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1-42), HO and kainic acid: implications for Alzheimer's disease. J Neurochem 2006;96(5):1322- 1335
    8. Negri DR, Borghi M, Baroncelli S, Macchia I, Buffa V, Sernicola L, Leone P, Titti F, Cara A. Identification of a cytotoxic T-lymphocyte (CTL) epitope recognized by Gag-specific CTLs in cynomolgus monkeys infected with simian/human immunodeficiency virus. J Gen Virol 2006;87(11):3385-3392
    9. Wang Y, Takao Y, Harada M, Komatsu N, Ono T, Sata M, Itoh K, Yamada A.
    ??Identification of hepatitis C virus (HCV) 2a-derived epitope peptides having the capacity to induce cytotoxic T lymphocytes in human leukocyte antigen-A24+ and HCV2a-infected patients.Ce// Immunol 2006;241(1):38-46
    
    10.周光炎,范丽安.HLA:新的进展和新的起点-记第九届国际组织相容性会议上海免 疫学杂志1996;16(6):321-324
    
    11. Le AX, Bernhard EJ, Holterman MJ, Strub S, Parham P, Lacy E, Engelhard VH. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J Immunol 1989; 142(4): 1366-1371
    
    12. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999;223(1):77-92
    
    13. Son YI, Egawa S, Tatsumi T, Redlinger RE Jr, Kalinski P, Kanto T.A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells. J Immunol Methods 2002;262( 1-2): 145-157
    
    14. Rojas JM, McArdle SE, Horton RB, Bell M, Mian S, Li G, Ali SA, Rees RC. Peptide immunisation of HLA-DR-transgenic mice permits the identification of a novel HLA-DRbetal~*0101- and HLA-DRbeta1~*0401-restricted epitope from p53.Cancer Immunol Immunother 2005; 54(3): 243-253
    
    15. Rohrlich PS, Cardinaud S, Lule J, Montero Julian FA, Prodhomme V, Firat H, Davignon JL, Perret E, Monseaux S, Necker A, Michelson S, Lemonnier FA, Charneau P, Davrinche C.Use of a lentiviral vector encoding a HCMV-chimeric IE1-pp65 protein for epitope identification in HLA-Transgenic mice and for ex vivo stimulation and expansion of CD8(+) cytotoxic T cells from human peripheral blood cells. Hum Immunol 2004; 65(5): 514-522
    
    16. Cho HI, Kim HJ, Oh ST, Kim TG. In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2003, 22:224-236
    
    17.石统东,吴玉章.CTL活性检测与监测.第三军医大学学报2000;22(10):1003-1007
    
    18. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001; 1471:99-108
    
    19.蔡永国,房殿春,杨仕明,罗元辉,陈陵,杨孟华,王东旭.肝素酶的表达在良、恶性腹水鉴 别诊断中的作用研究.中华肝脏病学杂志2005;13(5):384-385
    
    20. Sommerfeldt N , Beckhove P, Yingzi Ge, Schutz F, Choi C, Bucur M, Domschke C, Sohn C, Schneeweis A, Rom J, Pollmann D,Leucht D, Vlodavsky I, Schirrmacher V.Heparanase:A New Metastasis-Associated Antigen Recognized in Breast Cancer Patients by Spontaneously Induced Memory T Lymphocytes. Cancer Res 2006;66(15):7716-7123
    
    21. Chen L, Liang GP, Tang XD, Chen T, Cai YG, Fang MDC, Yu ST, Luo YH, Yang SM. In vitro anti-tumor immune response induced by dendritic cells transfected with hTERT recombinant adenovirus.Biochem Biophys Res Commun 2006;351 (4):927-934
    
    22. Gansuvd B, Hagihara M, Higuchi A, Ueda Y, Tazume K, Tsuchiya T, Munkhtuvshin N, Kato S, Hotta T. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR: synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol 2003; 64(4): 427-439
    
    23. Jang MH, Kweon MN, Hiroi T, Yamamoto M, Takahashi I, Kiyono H. Induction of cytotoxic T lymphocyte responses by cholera toxin-treated bone marrow-derived dendritic cells. Vaccine 2003 ;21(15): 1613-1619
    
    24. Radcliff FJ, Caruso DA, Koina C, Riordan MJ, Roberts AW, Tang ML, Baum CM, Woulfe SL, Ashley DM. Mobilization of dendritic cells in cancer patients treated with granulocyte colony-stimulating factor and chemotherapy. Br J Haematol 2002; 119(1): 204-211
    
    25.朱学军,曹雪涛,于益芝.人外周血树突状细胞的体外扩增及鉴定.中国肿瘤生物 治疗杂志1997;4(4):302-306
    
    26.熊菲,程茜.树突状细胞培养技术的研究进展.国外医学临床生物化学与检验学分册 2005;26(4):238
    
    27. Syme R , Gluck S. Effects of cytokines on the culture and differentiation of dendritic cells in vitro. J Hematother Stem Cell Res 2001;10(1):43
    
    28. Inaba K, Inaba M, Romani N, Aya H, Deguchi M;Ikehara S, MuramatsuS, Steinman RM.Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyter/ macrophage colony-stimulatingfactor. J Exp Med 1992;176(6) : 1693-1702
    29. Zhang Y,Mukaida N,Wang J, Harada A, Akiyama M, Matsushima K .Induction of dendritic cell differentiation by granulocyte2macrophage colony-stimulating factor,stem cell factor,and tumor necrosis factor a in vitro fromlineage phenotypes-negative c-kit~+murine hematopoietic progenitor cells. Blood 1997; 90(12): 4842-4853
    30. Ardavin C, Origin,precursors and differentiation of mouse dendritic cells.Nat Rev Immunol 2003;3(7):582
    31.Basak SK, Harui A, Stolina M, Sharma S, Mitani K, Dubinett SM, Roth MD. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 2002;99(8):2869-2879
    32. Sedlik C, Orbach D, Veron P, Schweighoffer E, Colucci F, Gamberale R, Ioan Facsinay A, Verbeek S, Ricciardi Castagnoli P, Bonnerot C, Tybulewicz VL,Di Santo J, Amigorena S. A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation. J Immunol 2003;170(2):846-852
    33. Lang J, Zhan J, Xu L, Yan Z. Identification of peptide mimetics of xenoreactive alpha-Gal antigenic epitope by phage display.Biochem Biophys Res Commun 2006; 344(1):214-220
    34. Hundemer M, Schmidt S, Condomines M, Lupu A, Hose D, Moos M, Cremer F, Kleist C, Terness P, Belle S, Ho AD, Goldschmidt H, Klein B, Christensen O.Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma. Exp Hematol 2006;34(4):486-496
    35. Lustgarten J, Dominguez AL, Pinilla C.Identification of cross-reactive peptides using combinatorial libraries circumvents tolerance against Her-2/neu-immunodominant epitope. J Immunol 2006;176(3):1796-1805
    36. Han JF, Zhao TT, Liu HL, Lin ZH, Wang HM, Ruan ZH, Zou LY, Wu YZ. Identification of a new HLA-A*0201-restricted cytotoxic T lymphocyte epitope from CML28. Cancer Immunol Immunother 2006;55(12): 1575-1583
    37. Colombetti S, Fagerberg T, Baumgartner P, Chapatte L, Speiser DE, Rufer N, Michielin O, Levy F. Impact of orthologous melan-A peptide immunizations on the anti-self melan-A/HLA-A2 T cell cross-reactivity. J Immunol 2006;176(11):6560- 6567
    38. ReitsEA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.J Exp Med 2006; 203(5): 1259-1271
    39. Depil S, Angyalosi G, Morales O, Delacre M, Delhem N, Francois V, Georges, Hammer J, Maillere B, Auriault C, Pancre V. Peptide-binding assays and HLA II transgenic Abeta degrees mice are consistent and complementary tools for identifying HLA II-restricted peptides.Vaccine 2006;24(13): 2225-2229
    40. Rohrlich PS, Cardinaud S, Lule J, Montero Julian FA, Prodhomme V, Firat H, Davignon JL, Perret E, Monseaux S, Necker A, Michelson S, Lemonnier FA, Charneau P, Davrinche C. Use of a lentiviral vector encoding a HCMV-chimeric IE1-pp65 protein for epitope identification in HLA-Transgenic mice and for ex vivo stimulation and expansion of CD8(+) cytotoxic T cells from human peripheral blood cells.Hum Immunol 2004; 65(5): 514-522
    
    
    1. Yu Z, Restifo NP.Cancer vaccines: progress reveals new complexities.J Clin Invest 2002;110(3):289-294
    
    2. Heo YS, Hwang SH, Kwon OJ, Hur SS, Oh HB. Structural aspect of novel HLA-A*02 allele, A~*0286, identified by sequence-based typing.Tissue Antigens 2006;67(l):84-85
    
    3. Bui HH, Schiewe AJ, von Grafenstein H, Haworth IS. Structural prediction of peptides binding to MHC class I molecules.Proteins 2006;63(l):43-52
    
    4. Gagnon SJ, Turner RV, Shiue MG, Damirjian M, Biddison WE. Extensive T cell receptor cross-reactivity on structurally diverse haptenated peptides presented by HLA-A2. Mol Immunol 2006;43(4):346-356
    
    5. 5.P. vander Bruggen, C. Traversari, P. Chomez, C. Lurquin, E.Deplane, B.Van den Eynde, A.knuth, and T.boon. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.Science 1991;254:1643-1647
    
    6. Schmidt Weber CB, Blaser K. Immunological mechanisms in specific immunotherapy. Springer Semin Immunopathol. 2004; 25(3-4): 377-390
    
    7.张圣林,吴力群.Th1/Th2偏移与恶性肿瘤关系的研究进展.细胞与分子免疫学杂志 2005;2(1):113-117
    
    8. Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.J Biosci 2007 Jan;32(1):31-42
    
    9. DeGroot AS, Jesdale B, Martin W, Saint Aubin C, Sbai H, Bosma A, Lieberman J, Skowron G, Mansourati F, Mayer KH. Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach.Vaccine 2003;21(27-30):4486-4504
    
    10. Rotzschke O , Falk K, Stevanovic S, Jung G, Walden P, Rammensee HG . Exact prediction of a natural T cell epitope.Eue J Immunol 1991;21 (11):2891-2 894
    
    11. Sette A , Sidney J ,Oseroff C,del-Guercio MF, Southwood S, Arrhenius T, Powell MF, Colon SM, Gaeta FC, Grey HM. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol 1993; 151 (6): 3163-3170
    12. Davenport MP , Ho Shon IA , Hill AV. An empirical method for the prediction of T-cell epitopes. Immunogenetics 1995 , 42 (5) : 392 - 397
    13. Rammensee H , Bachmann J , Emmerich NP , Bachor OA,Stevanovic S.SYFPEITHI: database for MHC ligands and peptide motifs .Immunogenetics 1999;50 (3-4):213- 219
    14. Parker KC , Bednarek MA , Coligan J E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994;152 (1): 163-175
    15. Brusic V,Rudy G,Honeyman MC, Hammer J, Harrison L.Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998; 14(2): 121-130
    16. Margalit H , Altuvia Y. Insights from MHC-bound peptides.Novartis Found Symp 2003;254:77-90
    17. Holzhutter HG, Frommel C,Kloetzel PM.A theoretical approach towards the dentification of cleavage2determining amino acid motifs of the 20 S proteasome. J Mol Biol 1999;286 (4): 1251-1265
    18. Nussbaum AK, Kuttler C , Hadeler KP , Rammensee HG; Schild H.PAProC: a prediction algorithm for proteasomal cleavages available on the WWW . Immunogenetics 2001;53(2):87-94
    19. Kesmir C,Nussbaum AK,Schild H,Detours V,Brunak S.Prediction of proteasome cleavage motifs by neural networks. Protein Eng 2002;15(4):287-296
    20. Daniel S , Brusic V , Caillat Zucman S, Petrovsky N,Harrison,L,Riganelli D, Sinigaglia F, Gallazzi F,Hammer J, van Endert PM.Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 1998;161(2):617-624
    21. Cascio P,Hilton C,Kisselev AF,Rock KL,Goldberg AL.26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide.EMSO J 2001;20(10):2357-2366
    22. Molinier Frenkel V, Popa N, Poulot V, Chaise C, Marquet J, Haioun C, Gaulard P, Farcet JP, Delfau Larue MH. Analysis of the intraclonal diversity of HLA-A0201-restricted T lymphocyte epitopes in follicular lymphoma idiotype.Br J Haematol
    ??2006;132(4):459-468
    
    23. Thakar MR, Bhonge LS, Lakhashe SK, Shankarkumar U, Sane SS, Kulkarni SS, Mahajan BA, Paranjape RS. Cytolytic T lymphocytes (CTLs) from HIV-1 subtype C-infected Indian patients recognize CTL epitopes from a conserved immunodominant region of HIV-1 Gag and Nef. J Infect Dis 2005; 192(5): 749-759
    
    24. Roland Schroers, Lei Shen,l Lisa Rollins,Cliona M. Rooney, Kevin Slawin,Grete Sonderstrup, Xue F. Huang, Si-Yi Chen.Human Telomerase Reverse TranscriptaseSpecificT-Helper Responses Induced by Promiscuous Major Histocompatibility Complex Class Ⅱ-Restricted Epitopes. Clin Cancer Res 2003; 9:4743-4755
    
    25.朱波,陈正堂,程晓明,林治华,吴玉章.肿瘤抗原TRAG-3 HLA-A2限制性CTL表位的 鉴定.免疫学杂志2004;20(6):411-415
    
    26. Schmitz M,Wehner R, Stevanovic S, Kiessling A, Rieger MA, Temme A,BachmannM, Rieber EP. Weigle B. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX Ⅱ Cancer Letters 2007; 245(1-2):331-336
    
    27. Lalonde A, Avila-Carino J, Caruso M, de Campos-Lima PO. Rescue of the immunotherapeutic potential of a novel T cell epitope in the Epstein-Barr virus latent membrane protein 2. Virology 2007;361(2):253-262
    
    28. Yamaguchi H, Tanaka F, Ohta M, Inoue H, Mori M. Identification of HLA-A2.4-restricted CTL epitope from cancer-testis antigen, NY-ESO-1, and induction of a specific antitumor immune response.Clin Cancer Res 2004; 10(3): 890-896
    
    29. 29. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T.A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254(5038): 1643-1647
    
    30. Hasegawa H, Mori M, Haraguchi M, Ueo H, Sugimachi K, Akiyoshi T. Expression spectrum of melanoma antigen-encoding gene family members in colorectal carcinoma. Arch Pathol Lab Med 1998; 122(6): 551-554
    
    31. Gerhardt A, Usener D, Keese M, Sturm J, Schadendorf D, Eichmuller S. Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer. Cancer Lett 2004;208(2): 197-206
    
    32.江继发,魏海明.检测肿瘤转移指标的临床意义.国外医学肿瘤学分册1998; 25(2):82-84
    33. Peikert T, Specks U, Farver C, Erzurum SC, Comhair SA. Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis.Cancer Res 2006; 66(9):4693-4700
    34. Pinto de Sousa J, David L,Almeida R, Leitao D, Preto JR, Seixas M, Pimenta A. c-erb B-2 expression is associated with tumor location and venous invasion and influences survival of patients with gastric carcinoma. Int J Surg Pathol 2002; 10(4): 247-256
    35. Nijman HW, Houbiers JG, Vierboom MP, van der Burg SH, DrijfhoutJW, D'Amaro J, Kenemans P, Melief CJ, Kast WM. Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes.Eur J Immunol 1993;23(6):1215-1219
    36. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R, Figdor CG, Adema, GJ. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 2000;60(24):6995-7001
    37. Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia.Blood 2000;96(4): 1480-1489
    38. McWilliams JA, McGurran SM, Dow SW, Slansky JE, Kedl RM. A modified tyrosinase-related protein 2 epitope generates high-affinity tumor-specific T cells but does not mediate therapeutic efficacy in an intradermal tumor model.J Immunol 2006; 177(1): 155-161
    39. Kawakami Y.Identification of human tumor antigens recognized by T cells. Nippon Rinsho 2005; 63(4):562-567
    40. Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M, Sumimoto H. Identification of human tumor antigens and its implications for diagnosis and treatment of cancer.Cancer Sci 2004;95(10):784-791
    41. Gross DA, Graff Dubois S, Opolon P, Cornet S, Alves P, Bennaceur Griscelli A, Faure O, Guillaume P, Firat H, Chouaib S, Lemonnier FA, Davoust J, Miconnet I, Vonderheide RH, Kosmatopoulos K. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest. 2004;113(3): 425-433.
    42. Yee C, Thompson TA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 2000,192 (11): 1637-1644
    43. Wang PH, Ko JL. Implication of human telomerase reverse transcriptase in cervical carcinogenesis and cancer recurrence. Int J Gynecol Cancer 2006; 16(5): 1873-1879
    44. Chapman EJ, Hurst CD, Pitt E, Chambers P, Aveyard JS, Knowles MA. Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 2006;25(36):5037-5045
    45. Wu YL, Dudognon C, Nguyen E, Hillion J, Pendino F, Tarkanyi I, Aradi J, Lanotte M, Tong JH, Chen GQ, Segal Bendirdjian E. Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci 2006;119(13):2797-2806
    46. Molldrem JJ,Lee PP,Kant S, Wieder E,Jiang W,Lu S,Wang C,Davis MM.Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003; 111 (5):639-647
    47. Brossart, P. Wirths S,Stuhler G,Reichardt VL,Kanz L,Brugger W.Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000;96(9):3102-3108
    48. Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, Fuji N, Fujiwara H, Ochiai T, Itoi H, Sonoyama T, Hagiwara A; Takesako,-K, Yamagishi H.Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A2.4-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas Int J Oncol 2004;24(4):909-917
    49. Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R, Matsumoto Y. Dendritic cells pulsed with HER-2/neu-derived Peptides can induce specific T-cell responses inpatientswith gastric cancer.Clin Cancer Res 2002;8(11):3394-3400
    50. Sadanaga N, Nagashima H, Mashino K, Tahara K,Yamaguchi H,Ohta M, Fujie T, Tanaka F,Inoue H, Takesako K,Akiyoshi T, Mori M.Dendritic cell vaccination withMAGE peptide is a novel therapeutic app roach for gastrointestinal carcinomas. Clin Cancer Res 2001;7(8):2277-2284
    51. Heukamp LC, van der Burg SH, Drijfhout JW,Melief CJ,Taylor Papadimitriou J, Offringa R. Identification of three non-VNTR MUC1-derived HLA-A*0201- restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2 /K( b) -transgenic micel.Int J Cancer 2001;91(3):385-392
    52. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996;66(4):470-476
    53. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003 8; 100 (14): 8372-8377
    54. Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, Neese PY, Grosh WW, Chianese Bullock KA, Woodson EM, Wiernasz CJ, Merrill P, Gibson J, Ross M, Engelhard VH.Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells.J Clin Oncol 2003;21(21):4016-4026
    55. Bettinotti MP, Panelli MC, Ruppe E, Mocellin S, Phan GQ, White DE, Marincola FM. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12: 170-178. Int J Cancer 2003;105(2):210-216
    56. Cebon J, Jager E, Shackleton MJ, Gibbs P, Davis ID, Hopkins W, Gibbs S, Chen Q, Karbach J, Jackson H, MacGregor DP, Sturrock S, Vaughan H, Maraskovsky E, Neumann A, Hoffman E, Sherman ML, Knuth A. Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun 2003;3:7
    57. Osanto S, Schiphorst PP, Weijl NI, Dijkstra N, Van Wees A, Brouwenstein N, Vaessen N, Van Krieken JH, Hermans J, Cleton FJ, Schrier PI. Vaccination of melanoma patients with an allogeneic, genetically modified interleukin 2-producing melanoma cell line.Hum Gene Ther 2000;11(5):739-750
    58. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmian G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999; 80(2): 219-230.
    59. Khong HT, Yang JC, Topalian SL, Sherry RM,Mavroukakis SA, White DE, Rosenberg SA. Immunization of HLA-A*0201 and/or HLA-DPbetal*04 patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J Immunother 2004;27(6): 472-477
    60. Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, Rath JC, Bock M, Brocker EB, Straten PT, Kampgen E, Becker JC.Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 2005;23(7): 884-889
    61. Mulders P,Tso CL,Gitlitz B,Kaboo R,Hinkel A,Frand S,Kiertscher S,Roth MD,deKernion J,Figlin R,Belldegrun A.Presentation of renal tumor antigens by human dendritic cells actives tumor - infiltrating lymphocytes against autologous tumor: imp lications for live kidney cancer vaccines. Clinical Cancer Research 1999;2(9):445-454
    62. Sievers E, Albers P, Schmidt Wolf IG, Marten A. Telomerase pulsed dendritic cells for immunotherapy for renal cell carcinoma. J Urol 2004;171(1):114-119
    63. Wierecky J, Muller MR, Wirths S, Haider Oehler E, Dorfel D, Schmidt SM, Hantschel M, Brugger W, Schroder S, Horger MS, Kanz L, Brossart P. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006;66(11):5910-5918
    64. Meier A, Reker S, Svane IM, Holten Andersen L, Becker JC, Sondergaard I, Andersen MH, Thor Straten P. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients.Cancer Immunol Immunother 2005;54(3):219-228
    65. Dees EC, McKinnon KP, Kuhns JJ, Chwastiak KA, Sparks S, Myers M, Collins EJ, Frelinger JA, Van Deventer H, Collichio F, Carey LA, Brecher ME, Graham M, Earp HS, Serody JS. Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer.Cancer Immunol Immunother 2004;53(9):777-785
    66. Azuma K, Shichijo S, Shomura H, Matsueda S, Fujii T, Itoh K. Identification of HER2/ neu-derived peptides capable of inducing both cellular and humoral immune responses in HLA-A24 positive breast cancer patients.fim2.st Cancer Res Treat 2004; 86(1): 19-29
    67. Svane IM, Pedersen AE, Johansen JS,Johnsen HE, Nielsen D, Kamby C, Ottesen S, Balslev E, Gaarsdal E, Nikolajsen K, Claesson MH. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 2007; [Epub ahead of print]
    68. Perambakam S, Hallmeyer S, Reddy S, Mahmud N, Bressler L, DeChristopher P, Mahmud D, Nunez R, Sosman JA, Peace DJ. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146-154 peptide.Cancer Immunol Immunother 2006; 55(9): 1033-1042
    69. Yao A, Harada M, Matsueda S, Ishihara Y, Shomura H, Takao Y, Noguchi M, Matsuoka K, Hara I, Kamidono S, Itoh K.New epitope peptides derived from parathyroid hormone-related protein which have the capacity to induce prostate cancer-reactive cytotoxic T lymphocytes in HLA-A2+ prostate cancer patients. Prostate 2005; 62(3): 233-242
    70. Harada M, Matsueda S, Yao A, Ogata R, Noguchi M, Itoh K. Prostate-related antigen-derived new peptides having the capacity of inducing prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients. Oncol Rep 2004; 12(3): 601-607
    71. Thomas Kaskel AK, Zeiser R,Jochim R,Robbel C, Schultze Seemann W,Waller CF, Veelken H.Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival.Int J Cancer 2006 ;119(10):2428-2434
    72. Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 2004;10(20):6946-6955
    73. Bricard G, Bouzourene H, Martinet O, Rimoldi D, Halkic N, Gillet M, Chaubert P, Macdonald HR, Romero P, Cerottini JC, Speiser DE. Naturally acquired MAGE-A10-and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J Immunol 2005; 174(3): 1709-1716
    74. van der Burg SH,Visseren MJ,Brandt RM,Kast WM,Melief CJ.Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability.J Immunol 1996;156(9):3308-3314
    75. Sette A,Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief C, Oseroff C, Yuan L, Ruppert J, Sidney J, del Guercio MF, Southwood S, Kubo RT, Chesnut RW, Grey HM, Chisari FV.The relationship between class I binding affinity and immunogenicity of potential cytotoxic t cell epitopes. J.Immunol 1994; 153(12):5586-5592
    76. Jager D, Karbach J, Pauligk C, Seil I, Frei C, Chen YT, Old LJ, Knuth A, Jager E. Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: definition of two HLA-A2 restricted peptide epitopes. Cancer Immun 2005; 5:11
    77. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG.Allele-specific motifs revealed by sequencing of self peptides eluted from MHC molecules. Nature 1991; 351(6324):290-296
    78. Fredenhagen A, Molleyres LP, Bohlendorf B, Laue G..Structure determination of neoefrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum.J Antibiot Tokyo 2006;59(5):267-280
    79. Spaner DE, Astsaturov I, Vogel T, Petrella T, Elias I, Burdett Radoux S, Verma S, Iscoe N, Hamilton P.Berinstein,-N-L.Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer 2006; 106(4): 890-899
    80. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4(3):321-327
    81. Tourdot, S. et alA general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur. J. Immunol 2000;30:3411-3421
    82. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC.Structure of the complex between human T-cell receptor, viral peptide and HLA-A2.Nature 1996; 384(6605): 134-141
    83. Bai G, Cui Y, Yang Y, Ye C, Liu,-M.A competitive low-affinity binding model for determining the mutual and specific sites of two ligands on protein.J Pharm Biomed Anal 2005;38(4):588-593
    84. Ding YH , Baker BM , Garboczi DN , Biddison WE , Wiley DC. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 1999; 11(1):45-56
    85. Ely LK;Green KJ, Beddoe T, Clements CS, Miles JJ, Bottomley SP, Zernich D, Kjer Nielsen L, Purcell AW, McCluskey J, Rossjohn J, Burrows SR.Antagonism of antiviral and allogeneic activity of a human public CTL clonotype by a single altered peptide ligand: implications for allograft rejection. J Immunol 2005;174(9): 5593-5601
    86. Babatz J, Rollig C, Lobel B, Folprecht G, Haack M, Gunther H, Kohne CH, Ehninger G, Schmitz M, Bornhauser M.Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells.Cancer Immunol Immunother 2006; 55(3):268-276
    87. Nakamura M, Iwahashi M, Nakamori M, Ueda K, Ojima T, Naka T, Ishida K, Yamaue H. Dendritic cells transduced with tumor-associated antigen gene elicit potent therapeutic antitumor immunity: comparison with immunodominant peptide-pulsed DCs.Oncology 2005;68(2-3): 163-170
    88. Gupta B, Torchilin VP. Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 2006;3(2): 177-190
    89. Pero SC, Shukla GS, Cookson MM, Flemer S Jr, Krag DN. Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells.Br J Cancer 2007 Apr 10; [Epub ahead of print]
    90. Frankenburg S, Grinberg I, Bazak Z, Fingerut L, Pitcovski J, Gorodetsky R, Peretz T, Spira RM, Skornik Y, Goldstein RS.Immunological activation following transcutaneous delivery of HR-gp100 protein. Vaccine 2007 Apr 25; [Epub ahead of print]
    91. Mitsui H, Inozume T, Kitamura R, Shibagaki N, Shimada S. Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity.J Invest Dermatol 2006; 126(8): 1804-1812
    92. Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities.J Control Release 2007; 117(2): 148-162
    93. Wang HY, Fu T, Wang G, Zeng G, Perry Lalley DM, Yang JC, Restifo NP, Hwu P , Wang RF.Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells.J Clin Invest 2002; 109(11): 1463-1470
    94. Shibagaki N, Udey MC. Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma.Eur J Immunol 2003;33(4):850-860
    95. Tan M, Lan KH, Yao J, Lu CH, Sun M, Neal CL, Lu J, Yu D. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide.Cancer Res 2006;66(7):3764-3772
    96. Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 2005; 57(4):637-651
    97. Andersen MH, Kvistborg P, Becker JC, Thor Straten P. Identification of an HLA-A1 restricted CTL epitope from Mcl-1.Leukemia 2005;19(6): 1084-1085
    98. Gong X, Gui X, Zhang Y, Tien P. Screening for CD8 cytotoxic T lymphocytes specific for Gag of human immunodeficiency virus type 1 subtype B' Henan isolate from China and identification of novel epitopes restricted by the HLA-A2 and HLA-A11 alleles. J Gen Virol2006;87(1): 151-158
    99. Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, SouthwoodS, Stewart B, Rodriguez Carreno MP, MotheB, Whitton JL, Sette A, Buchmeier MJ. Identification of protective Lassa virus epitopes that are restricted by 139 HLA-A2. J Virol 2006;80(17): 8351-8361
    100. Hoelsch K, Lenggeler I, Knabe H, Hartel K, Klein HG, Woelpl A. Identification of a novel HLA-B*44 variant (B*4441) in three unrelated Caucasian individuals.Tissue Antigens 2006;67(3):247-249
    101. Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, FukumaD, Yokomine K, Harao M, Beppu T, Matsui M, Torigoe T, Sato N, Baba H, Nishimura Y. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clim Cancer Res 2006;12(9):2689-2697
    102. Horaraa S, Harada M, Yano H, Ogasawara S, Shichijo S, Matsueda S, Komatsu N, Shomura H, Maeda Y, Sato Y, Todo S, Itoh K.Identification of squamous cell carcinoma antigen-derived peptides having the capacity of inducing cancer-reactive CTLs in HLA-A24+ cancer patients.Int J Oncol 2006;29(3):577-587
    103. Okumura H, Noguchi Y, Uenaka A, Aji T, Ono T, Nakagawa K, Aoe M, Shimizu N , Nakayama E.Identification of an HLA-A24-restricted OY-TES-1 epitope recognized by cytotoxic T-cells.Microbiol Immunol 2005;49(11): 1009-1016
    104. Kirk CJ, Mule JJ. Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 2000; 11(6):797-806
    105. Nakamura M, Iwahashi M, Nakamori M,Ueda K, Ojima T, Naka T, Ishida K, Yamaue H. Dendritic cells transduced with tumor associated antigen elicit potent therapeutic antitumor immunity: comparison with immunodominant peptied-pulsed DCs. Oncology 2005;68(2-3): 163-170
    106. Oh ST, Kim CH, Park MY, Won EH, Sohn HJ, Cho HI, Kang WK, Hong YK. Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine 2006; 24(15):2860-2868

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700