用户名: 密码: 验证码:
光合细菌合成纳米氧化物及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在传统直接沉淀法的基础上,分别以醋酸铜和硝酸铁为铜源和铁源、氢氧化钠为沉淀剂、光合细菌培养液为分散剂制备了纳米级氧化铜和氧化铁粉体,并用热重-差热分析(TG-DTA)、X-射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和傅里叶变换红外光谱分析(FT-IR)等测试手段对产品的结构性能进行了表征,探索了并得到了纳米氧化物制备的最佳条件。研究结果表明,通过对反应条件的控制,用光合细菌的培养液可以制得球形的纳米氧化物微粒,并且其分散性良好。制备的纳米氧化铜微粒平均粒径为38.6 nm,纳米氧化铁的平均粒径为17.4 nm。
     同时,用考马斯亮蓝G-250法对不同时期的光合细菌培养液中的蛋白质含量进行了测试,从而得出不同培养时期培养液中蛋白质含量的变化趋势,并对培养时间对整个反应过程产生的影响作了分析。用聚丙烯酰胺电泳(SDS-PAGE)法对培养液中的蛋白质种类随反应过程的变化进行了测试,并对结果进行了分析。
     最后,本文以光合细菌制备的纳米氧化铜作为催化剂,研究了它对高氯酸铵热分解的催化效果。通过研究发现,纳米氧化铜的加入会使高氯酸铵热分解的低温分解温度及高温分解温度均提前,但是对高氯酸铵的晶型转变温度并无明显影响。同时,纳米氧化铜的加入量越大,其对高氯酸铵热分解的催化效果也越明显。通过对比试验发现,用光合细菌制备的纳米氧化铜对高氯酸铵热分解的催化效果要比普通氧化铜的催化效果好,这说明,用光合细菌不仅可以制备出纳米级别的氧化铜,并且该氧化铜作为催化剂的催化效果也是很优越的,具有一定的实用性。
The nanocrystalline copper oxide and iron oxide powders were prepared in this paper on the basis of direct precipitation method with copper acetate and iron nitrate respectively as the raw materials, sodium hydroxide as the precipitating agent, and culture fluid from photosynthetic bacterium as dispersant. The structure and properties of the products were characterized by thermal gravimetry-differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and fourier infrared spectrum (FT-IR). The optimum conditions of preparation of the nano-paticles oxide were obtained. The results indicated that the nano-oxide particles produced were spherical and their dispersancy is better through the control of reaction conditions, by the culture fluid from photosynthetic bacteria. The average size of copper nano-oxide was 38.6 nm, and the iron nano-oxide was 17.4 nm.
     Meanwhile, the protein content of culture fluid from photosynthetic bacterium in different periods were tested by Coomassie brilliant blue G-250 method, and the tendency of the protein content was obtained. The variety of protein in the culture fluid were tested by SDS-polyacrylamide gelelectrophoresis method, and the results were analyzed.
     Finally, the catalytic effect of the thermal decomposition of ammonium perchlorate was studied with the nano-copper oxide prepared before as catalyst. Through the experiment, the addition of nano-copper oxide caused the low temperature and the high temperature of thermal decomposition of ammonium perchlorate both ahead of time, but it didn’t significantly affect on the phase transition temperature of ammonium perchlorate. Meanwhile, the more the amount of nano-copper oxide added, the more the catalytic effect of the thermal decomposition of ammonium perchlorate obvious. It was found that the catalytic effect was better through nano-copper oxide prepared before than the normal copper oxide. It is showed that the nano-particles of copper oxide not only can be prepared by photosynthetic bacteria, but also the catalytic effect of the nano-particles of copper oxide prepared was very excellent, with a certain practicality.
引文
[1]高镰.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003, 126.
    [2]张立德,牟季美.纳米材料与纳米技术[M].北京:科学出版社, 2001, 74~78.
    [3]陈月辉,赵光贤.纳米材料的特性和制备方法及应用[J].橡胶工业, 2004, 51(3): 182~ 188.
    [4]吕娟.纳米氧化铜直接沉淀法制备工艺及表面改性研究[D].陕西:西北大学, 2008.
    [5]程晨.纳米材料的特异效应及应用[J].安徽建筑工业学院学报(自然科学版), 2005, 13(4): 63~65.
    [6]焦兆友.纳米氧化物的制备及其性能表征[D].山东:曲阜师范大学, 2008.
    [7] Landau L D, Lifshits E M. Quantum Mechanics: Nonrelativistic Theory[M]. New York: Pergamon Press, 1977: 178.
    [8] Yu Chang, Hua Chun Zeng. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons[J]. Crystal Growth & Design, 2004, 4(2): 397~402.
    [9]徐羽展.超细粉体的制备方法[J].浙江教育学院学报, 2005, (5): 53~59.
    [10]张金才,王敏,戴静.纳米微粒制备技术[J].无机盐工业, 2005, 37(11): 7~10.
    [11]张坚,曹晓国,黄惠平.纳米金属粉末的制备方法及应用[J].材料导报, 2006, 20(7): 149~151.
    [12] Carnes C L, Stipp J, Klabunde K J. Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide[J]. Langmuir, 2002, 18: 1352~1359.
    [13] Hong Z.S., Cao Y, Deng J F. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles[J]. Mater. Lett., 2002, 52: 34~37.
    [14] Zou G F, Li H, Zhang D W, et al. Well-Aligned Arrarys of CuO Nanoplatelets[J]. J. Phys. Chem. B., 2006, 110: 1632~1637.
    [15]李冬梅,夏熙.络合沉淀法合成纳米氧化铜粉体及其性能表征[J].无机材料学报, 2001, 16(6): 1207~1210.
    [16]朱伟长,万玉宝.氧化铜纳米粉的制备及分散方法[J].北京科技大学学报, 2003, 25(3): 251~253
    [17]刘丽来,李哲.以阳极氧化铝模板为基底水热法合成纳米氧化铜[J].材料科学与工程学报, 2009, 27(2): 262~265.
    [18]罗元香,陆路德,刘孝恒等.纳米CuO的制备及对NH4ClO4热分解的催化性能[J].无机化学学报, 2004, 18(12): 1211~1214.
    [19]朱俊武,陈海群,郝艳霞等.针状CuO的制备及其催化性能研究[J].材料科学与工程学报, 2004, 22(3): 333~336.
    [20]崔宝臣,马丽景.纳米CuO的制备、表征及应用[J].化工进展, 2004, 23(5): 541~544.
    [21] Larsson P O, Andersson A. Complete oxidation of CO, ethanol and ethyl acetate ober copper oxide supported on titania and ceria modified titania[J]. J Catal, 1998,179:72~89.
    [22]张美英,纪红兵,王乐夫等.纳米氧化铜用于温和条件下的异丙苯氧化研究[J].化学通报, 2004, (1): 71~74.
    [23]缪应纯,翟忠标,王家强.纳米氧化铜制备与应用研究进展[J].化工科技市场, 2007, 30(4): 26~30.
    [24] Frietsch M, Zudock F, Goschnick J, et al. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensor[J]. Sensor and Actuators B, 2000, 65: 379~382.
    [25]侯振雨,谷永庆,张玉泉等.纳米铜氧化物的制备及气敏特性研究[J].郑州轻工业学院学报, 2004, 19(4): 32~33.
    [26]许慧丽,徐铸德,黄宛真.不同形貌的α-Fe_2O_3的水热控制合成[J].浙江大学学报(理学版), 2008, 35(5): 546~549.
    [27]牛新书,徐荭.溶胶-凝胶法制备α-Fe_2O_3纳米晶[J].应用化学, 2000, 17(6): 611~614.
    [28]徐小荣,李建芬,肖波等.均匀沉淀法制备纳米氧化铁及其工艺优化[J].无机盐工业, 2009, 41(6): 14~16.
    [29] CHEN Jie, WANG Xiang, QI Hong-ling,et al.A simple solvothermal method to synthe- sizeα-Fe_2O_3 nanostructures[J].Journal of Anhui Normal University(Natural Science), 2009, 32(5): 452~455.
    [30]李珍,吴明红,顾建忠等.电子束辐射技术制备纳米氧化铁[J].高效化学工程学报, 2006, 20(3): 481~484.
    [31]董睿,姜继森,杨燮龙.非水介质中制备纳米氧化铁[J].无机材料学报, 2002, 17(9): 967~972.
    [32]陈兴,邓兆祥,李宇鹏等.水热法制备超顺磁性铁氧体纳米微粒.无机化学学报,2002, (5): 460~464.
    [33] Jordon L. Preparation from Homogeneous Solution[D]. New York: Wiley, 1959.
    [34] Dormano J L, Fiorani D. Magnetic Properties of Fine Particles[M]. Amsterden:North Holland, 1991, 309~423.
    [35] Robert C. C R C Handbook of Chemistry and Physics[M]. Cleveland: The Chemical Rubber C O, 1980: 301~302.
    [36] K. L. Jonathan, J. B. Allen. Photochemistry of collodal semiconducting iron oxide polumorphs[J]. J.Phy.Chem., 1987, 91: 5076~5083.
    [37] H.H Huang, M.C Lu, J.N Chen.Catalytic decomposition of hydrogen peroxide and 2- chloropheno with iron oxides[J]. Water Reserch, 2001, 35(9): 2291~2299.
    [38]梁风焦,李多松,乔启成等.纳米α-Fe_2O_3粉体的制备及在光催化降解苯胺中的研究[J].苏州科技学院学报(工程技术版), 2006, 19(3): 34~37.
    [39]娄向东,王天喜,刘双枝等.氧化铁光催化降解活性染料的研究[J].环境污染治理技术与设备, 2006, 7(4): 97~99.
    [40] Price R R, Dressick WJ, Singh A. Fabrication of Nanoscale Metallic Spirals using Phospholipid Microtubule Organizational Templates[J]. J Am Chem Soc, 2003, 125: 11259~11263.
    [41] Kuber C. Bhainsa, S.F.D Souza. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus[J]. Colloids and Surfaces B: Biointerfaces, 2006, 47: 160~164.
    [42]熊雪良,陈坚等.生物模板法制备纳米Ni粒子的研究[J].矿业工程, 2008, 3(28): 95~ 101.
    [43]孙道华,王远鹏等.含生物质的水溶性纳米银粉的制备[J].厦门大学学报, 2009, 6(48): 858~861.
    [44] He S Y, Guo Z R, Zhang Y, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate[J]. Mater Lett, 2007, 61: 3984~3987.
    [45] He S Y, Zhang Y, Guo Z R, et al. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate[J]. Biotechnol Prog, 2008, 24: 476~480.
    [46] Anal K.Jha, K.Prasad, A.R.Kulkarni. Synthesis of TiO2 nanoparticles using microorgani- sms[J]. Colloids and Surfaces B: Bio-interfaces, 2009, 71: 226~229.
    [47] Vipul Bansal, Debabrata Rautaray, Absar Ahamd, et al. Biosynthesisi of zirconia nano- particles using the fungus Fusarium oxysporum[J]. Journal of Materials Chemistry, 2004, 14: 3303~3305.
    [48] Weijia Zhou, Wen He, Shide Zhong, et al. Biosynthesis and magnetic properties of meso- porous Fe3O4 composites[J]. Journal of Magnetism and Magnetic Materials, 2008, 9:1~4.
    [49]孙道华,李清彪等.生物还原法制备负载型钯催化剂[J].石油化工, 2006, 5(35): 434~437.
    [50]贡俊,张肇铭,白红娟等.脱硫肠状菌合成纳米硫化铅[J].中国科学E辑:技术科学, 2008, 38(3): 455~459.
    [51] Carsten Krebs, Jeffrey N. Agar, Archer D. Smith, et al. IscA, an Alternate Scaffold for FeS Cluster Biosynthesis[J]. Biochemistry, 2001, 40(46): 14069~14080.
    [52] Bai H J, Zhang Z M, Gong J. Biological synthesis of semiconductor zinc sulfide nano- particles by immobilized Rhodobacter sphaeroides[J]. Biotechnol Lett, 2006, 28: 1135~ 1139.
    [53] Bai H J, Zhang Z M, Guo Y, et al. Biological synthesis of size-controlled cadmium sul- fide nanoparticles using immobilized Rhodobacter sphaeroides[J]. Nanoscale Research Letters, 2009, 4: 717~723.
    [54]何剑丹,龙炳清,刘长根等.光合细菌的应用现状与前景[J].四川师范大学学报(自然科学版), 2005, 28(1): 114~116.
    [55]杜近义,秦际威.光合细菌的开发应用进展[J].生物学通报, 1998, 11(5): 15~18.
    [56]丁彦文,艾红.微生物在水产养殖中的应用[J].湛江海洋大学学报, 2000, 20(1): 68~73.
    [57]郭凌.光合细菌在防治重金属对农作物污染中的作用及机理研究[D].山西:山西大学, 2007.
    [58] Giotta L, Agostiano A, Italiano F, et al. Heavy metal ion influence on the photosynthetic growth of Rhodobaccter sphaerioides[J]. Chemosphere, 2006, 62: 1490~1499.
    [59]愈吉安.应用光合细菌处理高浓度有机废水的新技术[J].环境科学, 1987, 8(3): 47~52.
    [60]丁成.固定化光合细菌对含酚废水的生物降解试验[J].水资源保护, 2008, 24(6): 93~95.
    [61]谢冰.有机废水的复合光合细菌法处理及机理初探[J].应用与环境生物学报, 1999,5(S1):88~90.
    [62]周茂洪,赵肖为,吴雪昌.光合细菌沼泽红假单胞菌同化磷能力的研究[J].科技通报, 2002, 18(2): 142~146.
    [63]丁爱中.光合细菌调控水产养殖业水质的研究[J].农业环境保护, 2000,19(6): 339~ 341.
    [64]崔竞进,丁美丽. PSB在对虾育苗生产中的应用[J].青岛海洋大学学报, 1997, 27(2): 191~195.
    [65]李勤生. PSB的基本特性及其在水产养殖中的应用[J].水利渔业, 1995, 75(1): 3~5.
    [66] Tobin J M. Development of multimetal binding model and application to binary metal biosorption onto peat biomass[J]. Water Research, 2003, 37(16): 3967~3977.
    [67]黄象艳,王宇新,钱新民.光对PSB生长及色素合成的影响[J].山东大学学报(自然科学版), 1996, 31(3): 347~350.
    [68]席淑淇,成玮,刘培富.利用废水生产光合细菌提取天然色素的研究[J].污染防治技术, 1997, 10(2): 65~67.
    [69]李可,张肇铭,曹养宪.沼泽红假单胞菌对火星KBR脱色的研究[J].中国环境科学, 2004, 24(3): 299~302.
    [70]黄富荣.光合细菌对重金属废水的处理[D].广东:暨南大学, 2004.
    [71]白红娟,张肇铭,杨官娥等.球形红细菌转化去除重金属镉及其机理研究[J].环境科学学报, 2006, 26(11): 1809~1814.
    [72]王积森,杨金凯,鲍英等.氧化铜纳米粉体的制备新方法[J].中国粉体技术, 2003, 9(4): 39~41.
    [73]王红.氧化铁纳米材料的可控合成研究[D].吉林:吉林大学, 2008.
    [74]王龙硕.配位氧化均匀沉淀法制备纳米氧化铜及应用研究[D].湖南:湘潭大学, 2008.
    [75]缪晓春.纳米氧化铜及其复合氧化物的制备和性能研究[D].南京:南京理工大学, 2003.
    [76]焦兆友.纳米氧化物的制备及其性能表征[D].山东:曲阜师范大学, 2008.
    [77] Kulkarni SS, Lokande CD. Structural, optical, eleetrical and dielectrical properties of electro-synthesized nanocrystalline iron oxide thin films[J]. Materials Chemistry and Physics, 2003, 82: 151~156.
    [78] Casas LI, Roig A, Rodriguez E, et al. Silica aerogel-iron oxide nano-composites: struc- ture and magnetic properties[J]. Journal of Non-Crystalline Solids, 2001, 285: 37~43.
    [79]刘国华,陈燕明.超微超顺磁性氧化铁纳米粒及其在肿瘤磁共振成像中的应用[J].医学综述, 2010, (16): 35~40.
    [80]姜雄华.氧化铁和铜粉超细粒子的制备与表征[D].广西:广西大学, 2006.
    [81]景红霞.α-Fe_2O_3纳米粒子的可控制备与性能研究[D].山西:中北大学, 2006.
    [82]李艳玲.纳米氧化铁的制备及其性能表征[D].山东:中国海洋大学, 2004.
    [83]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工, 2009, 23(3): 40~42.
    [84]王晓华,朱文渊主编.生物化学与分子生物学实验技术[M].北京:化学工业出版社, 2008, 76.
    [85]张维明主编.现代分子生物学实验手册[M].北京:科学出版社, 2003: 107.
    [86]戴彬,吉坤美,张同艳等.聚丙烯酰胺凝胶电泳前活性染料与蛋白质共价染色的条件探索[J].分析化学研究报告, 2010, 38(10): 1423~1427.
    [87]关海涛,徐世昌,郭玉华.两种聚丙烯酰胺凝胶银染方法的比较[J].沈阳农业大学学报, 2006, 37(1): 86~87.
    [88]王艳萍.系列金属氧化物纳米晶的制备、结构及其对高氯酸铵的催化性能研究[D].南京:南京理工大学, 2006.
    [89]张端庆.火药用原材料性能与制备[M].北京:北京理工大学出版社, 1995.
    [90] P.W.M.Jacobs, R.A.Jones. The thermal decomposition and ignition of mixtures of ammonium perchlorate and copper chromite[J]. Proceeding of the 11st Symposium on Combustion, The Combustion Institute, Pittsburgh, 1967:457~462.
    [91]朱俊武.纳米金属氧化物的微结构控制及其应用性能研究[D].南京:南京理工大学, 2005.
    [92]王德才.火药学[M].南京:华东工学院, 1998, 78~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700