用户名: 密码: 验证码:
突出煤层钻孔变形机理数值模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出已成为煤矿安全生产亟待解决的问题,煤层瓦斯抽放是防治煤与瓦斯突出的重要解决措施,但是在突出煤层中实施顺煤层瓦斯抽放钻孔,由于突出煤层的特殊物理力学性质,容易导致钻孔钻进不深,钻孔喷孔、塌孔、抱(夹)钻等现象,严重影响着煤矿的安全生产。因此研究突出煤层中钻孔变形机理,寻找导致钻孔变形的原因,从而消除或减小这种原因对钻孔变形的影响,使钻孔顺利钻进和成孔是非常必要的,而且对煤矿安全生产具有现实意义。
     论文根据突出煤层软弱的性质,确定了突出煤层的软化力学模型,并且依据突出煤体的变形方程和瓦斯流体的渗流方程,研究分析了煤体和瓦斯流体相互的影响关系,最终构成了固-流耦合问题的数学模型;然后论文采用FLAC/FLAC3D模拟软件对这个数学模型求解,就可得到煤体应力场、煤体变形场以及瓦斯渗流场的分布规律,近而可以对钻孔变形机理分析研究。模拟结果表明:钻孔的钻进应力集中区域始终出现在钻孔的前端,而且随着钻孔钻进深度的增加钻孔孔壁的应力也出现局部应力集中,钻孔钻进的深度越大局部的应力集中区域也逐渐的增大,同时向钻孔钻进方向移动;钻孔的应力的集中变化造成孔壁周围煤体裂隙增加,破裂碎胀,最终导致钻孔位移的变化,而且随着钻孔钻进深度的增大,量值和范围增大,而且逐步向深部移动趋势;钻孔钻进出现瓦斯压力梯度,使得瓦斯向压力梯度小的方向运移,而且随着钻孔深度的增加,瓦斯梯度越密集,瓦斯放散速度越大,瓦斯膨胀能就越高,导致的钻孔的变形能就越大。高能量的膨胀能和变形能造成孔壁周围煤体裂隙大量增加,破裂碎胀严重,携带大量煤粉喷出钻孔,造成喷孔现象,甚至煤与瓦斯突出。
In china coal and gas outburst has become a serious problem in coal mine production safety. Coal seam gas drainage is important solutions to prevent coal and gas outburst. However,due to the special physical and mechanical of outburst coal seam, drilling is not easily lead to drilling of deeper, drilling nozzle, hole collapse, hold (folder) and drilling when we implemented drill holes along in outburst coal seam gas. It has seriously affected the safety of coal production. So the deformation mechanism of drilling in the outburst is significance for coal mine safety of practical. It find the reasons leading drilling deformation,thus eliminate or reduce them. It is necessary for well drilling and the drill hole.
     This paper establishes softening mechanical model of outburst baseing on the nature of the weak outburst, and formes the Mathematical model of solid - flow the coupled problem baseing on the deformation equation of outburst coal and gas fluid flow equation.It analysis the mutual influence between the gas fluid and outburst coal. Then thesis can be the distribution of the holes about the stress field and deformation field and gas seepage coal by solving this mathematical model by the simulation software of FLAC/ FLAC3D. So borehole deformation mechanism can be analyzed. The results show that stress concentration area always appear in front of drilling. With the process of the depth drilling hole, wall stress of the drill hole also lead to local stress concentration. The greater the depth of drilling hole,the more local stress concentration area is gradually increasing, while it is moving to direction of the hole drilling. Changes in drilling result in displacement changes of drilling with increasing of the drilling depth. It causes to increase coal fracture, broken broken, the magnitude and scope by the stress concentration around the hole wall., and gradually trends in deeper. Gas pressure gradient is appeared in hole drilling. It makes the gas pressure gradient migrate the smaller direction. With increasing of the drilling depth, the greater the deformation energy hole result form the more dense gas gradient, the greater the rate of gas elution, the higher gas expansion energy. These reasons cause deformation of the wall around the hole, such as increasing fracture in coal, broken seriously, carrying large amounts of coal dust to spurt out, causing the phenomenon of spray holes, and even coal and gas outburst.
引文
[1]张子敏.瓦斯地质学[M].中国矿业大学出版社
    [2]赵斌.打钻突出及预防[J].湖南煤炭科技,1994.3.
    [3]马丕梁,范启炜.我国煤矿抽放瓦斯现状及展望[J].煤炭科学研究总院.2004.2(24):5-7
    [4]邱泽华等,国外钻孔应变观测的发展现状[J].地震学报.2004.11(26):162-167
    [5]罗大生.国外钻探技术的发展现状[J].国外地质勘探技术,1993.
    [6]邱泽华,石耀霖,欧阳祖熙.四分量钻孔应变观测的实地相对标定[J].大地测量与地球动力学,2005.2(25):118-122
    [7]赵阳升.瓦斯压力在突出中作用的数值模拟研究[J].岩石力学与工程学报.1993.4(12):328-337
    [8]黄耀祥,王永岩,毕向阳.巷道围岩变形的有限元分析及灰色模型预报[J].辽宁工程技术大学学报,2003.5(22):632-634
    [9]唐春安.远程卸压瓦斯抽放数值模拟[J].煤田地质与勘探,2004.8(24):10-13
    [10]王凯,俞启香,蒋承林.钻孔瓦斯动态涌出的数值模拟研究[J].煤炭学报.2001.6(26):279-284
    [11]丁厚成,蒋仲安,韩云龙.顺煤层钻孔抽放瓦斯数值模拟与应用[J].北京科技大学学报.2008.11(30):1205-1210
    [12]梁运培,胡千庭.地面采空区瓦斯抽放钻孔稳定性分析[J].煤矿安全,2007.3:1-4
    [13]梁运培等.防突钻孔失稳的力学条件分析[J].采矿与安全工程学报.2008.12(25):444-448
    [14]范维唐.跨世纪煤炭工业新技术[M].北京:煤炭工业出版社,1997.
    [15] KLAUS NOACK. Control of gas emissions in underground coal mines[J]. International Journal of Coal Geology, 1998.6(2):57-82
    [16]俞启香.矿井瓦斯防治[M].中国矿业大学出版社.1992
    [17]漆旺生.煤与瓦斯突出危险性弹性波评价及其应用研究[D].北京:北京科技大学,2005
    [18]张子敏.瓦斯地质基础[M].北京:煤炭工业出版社,2008.8
    [19]周维垣.高等岩石力学[M].水利电力出版社,1990.6
    [20]张流芳.材料力学[M].武汉理工大学出版社,2002.11
    [21] CHOI S.K, WOLD M B. A Coupled geomechanical-reservoir model for the modelling of coal and gas outbursts[J]. Elsevier Geo-Engineering Book Series, 2004, 2: 629-634.
    [22]何满潮,邹正盛,邹友锋.软岩巷道工程概论[M].中国矿业大学出版社,1993.10
    [23] Md. Rafiqul Islam. Ryuichi Shinjo. Numerical simulation of stress distributions and displacements around an entry roadway with igneous intrusion and potential sources of seam gas emission of the Barapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology.2009.6
    [24]张驰,兰永伟.深部开采中软岩巷道的支护形式[J].煤炭技术.2007.8
    [25]薛顺勋,聂光国等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002.4
    [26] C. Wang, Y. Wang, S. Lu. Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control[J].International Journal of Rock Mechanics and Mining Sciences.2000.3
    [27] WANG Jin-xi, LIN Ming-yue. Deformation characteristics of surrounding rock of broken and soft rock roadway[J].Mining Science and Technology.2009.2
    [28]涂心彦,赵九江.预应力锚索支护在治理软岩巷道破坏中的应用[J].矿山压力与顶板管理.2002.3
    [29] C.D. Martin, P.K. Kaiser, R. Christiansson. Stress, instability and design of underground excavations[J].International Journal of Rock Mechanics and Mining Sciences.2003.6
    [30]董方庭等.巷道围岩松动圈支护理论[J].煤炭学报.1994.2(16):21-32
    [31]陈学华,沈海鸿,王善勇.巷道围岩自稳结构原理及其影响因素研究[J].辽宁工程技术大学学报,2002,21(3):261-263
    [32]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1996.
    [33]鲁岩,邹喜正等.围岩破碎圈的理论分析与实践[J].辽宁工程技术大学学报,2006.7(26):219-221
    [34]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D]徐州:中国矿业大学博士论文,1998
    [35]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996
    [36]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报.1995.6
    [37]李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1980
    [38]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1980.1
    [39]刘志伟.构造和应力对煤与瓦斯突出的控制作用研究[D].抚顺:辽宁工程技术大学,2006.
    [40] DANISH M, SHARMA R K. Gas absorption with first order chemical reaction in a laminar falling film over a reacting solid wall[J]. Applied Mathematical Modelling, 2007, 8(6): 901-929
    [41] SEI I, KANAR I.An inference on the process of gas outburst from Lake Nyos Cameroon[J]. Journal of Volcanology and Geothermal Research, 1989, 16(11):135-149
    [42] BARKER G R, RADCHENKO S A. The relationship between the pore structure of coal and gas-dynamic behaviour of coal seams[J], Mining Science and Technology, 1989, 6(2):109-131
    [43]卢平.煤瓦斯共采与突出防治机理及应用研究[D].合肥:中国科学技术大学,2002.
    [44]王献孚.高等流体力学[M].武汉:华中科技大学出版社,2002.2
    [45]赵占义.开采解放层综采工作面瓦斯综合治理技术[J].煤炭技术,2007(11):78
    [46]刘波,韩彦辉.FLAC原理实例与应用指南[M].北京:人民交通出版社,2005
    [47]彭文彬.FLAC3D实用教程[M].北京:机械工业出版社,2007.8
    [48]陈育民,徐鼎平.FLAC/FALC3D基础与工程实例[M].北京:水利水电出版社,2009.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700