用户名: 密码: 验证码:
铒镱共掺光纤放大器的结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的飞速发展,光纤放大器在DWDM传输系统、光纤CATV和光纤接入网中有着越来越广泛的应用。泵浦耦合技术是光纤放大器的关键技术之一,其中多点泵浦技术是在侧面泵浦的基础上发展起来的,能有效提高放大器的增益和增益的均衡性。
     本文主要研究了多点泵浦在铒镱共掺光纤放大器(EYDFA)中的应用和结构优化。首先,以正向泵浦方式的单级EYDFA为原型,着重分析了其中泵浦功率的变化对放大器增益的影响;其次,通过分析比较,从目前种类繁多的侧面泵浦耦合技术中,选择了一种最适用于多点泵浦的耦合方式;同时,研究了多点泵浦高功率激光器在不同情况下的增益变化,为多点泵浦光纤放大器的结构优化提供了指导方向。最后,本文在原型的基础上设计了一种多点泵浦的放大器结构,与不采用多点泵浦的原型比较,其增益提升了近2dB,同时增益的均衡性也有了很大的改善。在此基础上,确定泵浦源之间的间隔,通过调整三个泵浦源功率的分布,对设计的多点泵浦铒镱共掺光纤放大器的结构进行了优化。实验表明,改善之后,相对于初始的多点泵浦模型,增益上有了近1dB的提升。
As the rapid development of communication technology, fiber amplifier has become increasingly widely used in the DWDM transmission system, fiber optic CATV and fiber access networks. Pump coupling is one of the key technologies of fiber amplifier. Multi-pump technology which developed based on the side-pumped technology can improve the gain and balance of amplifier.
     This paper mainly studied the application and structural optimization of multi-point pump in erbium/ytterbium co-doped fiber amplifier (EYDFA). First, using positive approach single-stage pump of EYDFA as the prototype, we analyzed the impact of variable pump power on the amplifier gain; second, by analysis and comparison, a suitable one for multi-point coupling from the wide variety of side-pumped coupling technology was selected; meanwhile, we studied the gain variation of the multi-pumped high-power laser in different situation, which provided a direction for optimization of the multi-pumped fiber amplifier. Finally, on the basis of the prototype we designed a multi-pumped amplifier structure which made the gain increased by nearly 2dB comparing with the prototype. On this basis, by determining the interval between the pump and adjusting the distribution of the three pump power,the structure of multi-point erbium/ytterbium co-doped fiber amplifier was optimized. Experimental results show that comparing with the initial multi-point pump model, the gain of the optimized model increased by nearly 1dB.
引文
[1] Belforte. David A. Milestone in industrial laser materials processing[J]. Industrial Laser Solutions,2010, 25(1):43-49.
    [2] Zmuda.Michael.Wayne. Stimulated Brillouin scattering effects and suppression techniques in high power fiber amplifiers[D]. The University of New Mexico,2003.
    [3]李永武.光放大器的分类,特性和应用[J].现代有线传输, 2000,第3期:15-20.
    [4] Simpson. J. R. Erbium-doped fiber amplifiers:fundamentals and technology[M]. Phoenix Lieb press:2008.
    [5]郑玉甫.光纤通信原理与技术[M].兰州大学出版社:2006.
    [6]杨祥林等编著.光放大器及其应用[M].北京市:电子工业出版社. 2000.
    [7]辛化梅,薛林.关于光放大器的最新发展及应用[J].山东师范大学学报(自然科学版),2004,第2期:34-37.
    [8] Pramanik. Manish. demonstrate gain robbing of an edfa by bending an optical fiber[D]. state university of new york institute of technology,2007.
    [9] Saaid.Nordiana Mohamad. Nonlinear optical effects suppression methods in WDM systems with EDFAs:A review[C]. Computer and Communication Engineering (ICCCE),2010.
    [10] S. A. Daud. Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach[J]. Laser Physics, 2008,18(11):119-123.
    [11] P. Hajireza. Optimization of gain flattened C-band EDFA using macro-bending[J]. Laser Physics, 2010,20(6):73-82.
    [12]刘琨.双包层铒镱共掺光纤放大器的研究[D].西安电子科技大学,2009.
    [13] G .C .Valley. Modeling cladding-pumped Er/Yb fiber amplifiers[J]. Optical fiber technology. 2001, 7(21-24).
    [14]戴亚军.泵浦光与信号光的光强重叠因子和掺铒波导放大器的增益特性[D].上海交通大学,2008.
    [15] G.sorbello. S. Taccheo. P.Laporta. Numerical modeling and experimental investigation of double-cladding erbium-ytterbium-doped fiber amplifiers[J]. pt. Quantum Electron,2001, 33: 599-619.
    [16]王国政,王蓟. 915nm泵浦混合掺铒/铒镱共掺双包层光纤放大器[J].应用光学, 2010,第3期:37-43.
    [17]许强,黄勇. 2x6熔融拉锥形单模光纤耦合器的特性分析[J].光学学报,2005,第6期:751-754.
    [18] D. B. Cryan.Wavelength-insensitive singal-mode fused tapered 1xN couplers[C]. OFC’96 Technical Digest,2010.
    [19] Dieter. Schuocker. High Power Lasers and their Industrial application[M]. 1986.
    [20]郭玉彬,霍佳雨主编.光纤激光器及其应用[M].北京市:科学出版社,2008.
    [21]俞建杰,谭立英等.大功率半导体激光器阵列光束整形新进展[J].激光与光电子学进展,2008 ,第4期:46-50.
    [22] Peter. Yang. Wang. Beam-shaping optics deliver high-power beam[J]. Laser Focus World,37(12):115-118.
    [23] Pethel. Shawn. Dwayne.chronization and control of chaos in semiconductor laser arrays[D]. The University of Alabama in Huntsville,2000.
    [24]张春伟,向世清,王常安.空间多点泵浦双包层光纤激光器的数值分析:典型三点泵浦情形[J].光学学报2003,23(2):249-254.
    [25] Kuang. Yu. Diode-laser-pumped Ti:Sapphire double-clad crystal fiber broadband light source[C]. San Jose, CA, USA ,2010.
    [26]张辉,王子华.用焦散面半径方法计算双包层光纤的吸收效率[J].上海大学学报(自然科学版), 2002,第5期:77-83.
    [27]阮乂,宁提纲.双包层泵浦光纤激光器耦合技术研究[C].信息通信网技术业务发展研讨会,2008.
    [28] Q. Wang, N. K. Dutta. Er-Yb doped double clad fiber amplifier. Proc. SPIE, 2003, 5246:208~215.
    [29]王勇刚.双包层光纤激光器的微棱镜反射式侧面耦合技术[J].光学学报,2009,第4期:974-979.
    [30] Yubin. Guo. Short cavity single-frequency all-fiber Er/Yb co-doped laser[J]. Frontiers of Optoelectronics in China,2009,2(1):158-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700