用户名: 密码: 验证码:
B型烟粉虱两种寄生蜂寄主处理策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型烟粉虱Bemisia tabaci(Gennadius)是热带和亚热带地区主要害虫之一,在世界90多个国家和地区均有分布。B型烟粉虱除吸食寄主汁液、蜜露污染寄主叶面等直接为害外,更严重的是能传播200多种植物病毒,每年造成经济损失全球超3亿美元。由于该虫繁殖能力强,容易产生抗药性,所以化学防治不能达到理想效果,再加上人们对食品安全及环境保护的重视,烟粉虱的生物防治成为热门研究领域。近一个世纪来全世界害虫防治的历史充分表明,引进天敌是丰富本地天敌资源、改善本地昆虫群落结构,从而经济、安全和持续有效的控制入侵害虫的一个最佳策略,寄生蜂是农林生态系统害虫的重要生防作用物,因此,本文以烟粉虱的两种专性优势寄生蜂浅黄恩蚜小蜂Encarsia sophia和海氏桨角蚜小蜂Eretmocerus hayati为研究对象,从以下三个方面对两种寄生蜂进行了研究:
     1.海氏桨角蚜小蜂和浅黄恩蚜小蜂雌性生殖系统的结构解剖。
     2.海氏桨角蚜小蜂对B型烟粉虱各龄期若虫的寄主适应性。
     3.寄主密度对浅黄恩蚜小蜂和海氏桨角蚜小蜂寄生和取食策略的影响。得出以下结果:
     1.两种小蜂的卵巢均由6条卵巢管构成,海氏桨角蚜小蜂羽化6h和24h后体内成熟卵的数量均显著高于浅黄恩蚜小蜂,这与海氏桨角蚜小蜂24h雌蜂的寄生量显著高于浅黄恩蚜小蜂,而寄主取食量却低于浅黄恩蚜小蜂的结果一致。
     2.海氏桨角蚜小蜂的产卵量随寄主龄期的增加显著降低,在B型烟粉虱一龄若虫上的产卵量最高,单雌一日产卵量为10.2粒;随寄主龄期的增加寄生蜂的发育时间缩短,在烟粉虱四龄早期若虫上的发育时间最短,整个幼期的发育时间为13.5天;雌、雄海氏桨角蚜小蜂在烟粉虱1~4龄若虫上整个幼期的发育时间没有显著性差异,整个幼期的存活率75.2%,雌雄性比在0.92~1.43。
     3.单一龄期下,寄生蜂资源权衡侧重不同:寄主密度较低的情况下,海氏桨角蚜小蜂倾向于首先满足繁殖需要;浅黄恩蚜小蜂倾向于首先满足营养需求;不同龄期下,海氏桨角蚜小蜂选择取食和寄生的寄主龄期的变化会以繁殖的寄主适宜度优先.;浅黄恩蚜小蜂选择取食和寄生的寄主龄期的变化是在满足基本繁殖需求后,会以取食的寄主适宜度优先。
Bemisia tabaci (Gennadius) B-biotype is one of the most important pest insects of vegetables, broadleaf field crops, and ornamentals in the tropics and subtropics of the world and under protected environments in other areas. Damage is caused not only by direct feeding, but also through transmission of viral diseases. B. tabaci B-biotype also damage plants by inducing physiological disorders such as irregular ripening in tomato. Biological control could be an attractive management alternative for those whiteflies. Nearly a century, the history of pest control around the world amply demonstrated, the introduction of natural enemies is one of the best strategy for invasive pests,which can be abundant local natural enemies to improve the local insect community structure, and thus economic, security and sustained effective control invasive pests, parasitic wasps ecological agriculture and forestry Important pest biocontrol system substrate, therefore, this paper use Eretmocerus hayati and
     Encarsia sophia which are two obligate and dominant parasitic wasp of whitefly advantage as the research object, from the following three aspects studied these two parasitic wasp:
     1. Er.hayati and En.sophia structural anatomy of the female reproductive system.
     2 .The host adaptation of Er.hayati on different ages of nymphs to B.tabaci.
     3 .The effect of host density on the parasitism and Feeding Strategies of Er. hayati and En.sophia.
     The following results:
     1. Both parasitoid females had two ovaries and each had three ovarioles. The numbers of mature ova in 6 or 24 h-old Er. hayati female were higher than that in En. sophia, respectively, which was coincident with the results of oviposition experiment indicating that the number of host parasitized by 24 h-old Er. hayati female was higher than that by 24 h-old En. sophia female, and the number of host fed was lower than that of En. sophia.
     2. Fecundity increase with host age and a significant reduction in the B. tabaci B-biotype one instar nymphs of eggs on the highest single-day female fecundity is 10.2; with host age and the increase in parasitic wasps Shorten development time, in the early fourth instar whitefly nymphs on the shortest development time, the immature development time was 13.5 days; female and male sea wasp's propeller angle of aphids in instar whitefly nymphs 1 to 4 on the whole child Development time period there was no significant difference in the survival rate of 75.2%immature, male and female sex ratio of 0.92~1.43.
     3. At a single host age, different trade-off parasitic wasps different emphasis: when the host density is lower, Er. hayati tends to meet the reproduction needs firstly.; En. sophia tends to first meet the nutritional needs. Under the different host age, when the host density is lower, Er. hayati will priority find the optimal hosts to spawn,and feed the Alternative age hosts. when the host density is higher,the spawning and feeding of Parasitoid all tend to select the the optimal age hosts; En. sophia will feed optimal hosts after meeting their basic breeding.
引文
黄振,任顺祥,姚松林.烟粉虱捕食性天敌淡色斧瓢虫的形态特征及生活习性[J]. 昆虫知识, 2003, 40(5): 450-453.
    刘爽,张帆.大草蛉和东亚小花蝽对烟粉虱的捕食功能研究[A]. 2005, 71-73.
    刘同先,康乐.昆虫学研究进展与展望[M].北京:科学出版社, 2005, 271-315.
    罗晨,张君明,石宝才,张帆,张芝利.北京地区烟粉虱调查初报.北京农业科学, 2000, 18, (增刊): 42-47.
    潘恕.温室白粉虱的新天敌—小花蜷研究简报[J].中国蔬菜, 1986, 3: 41.
    邱宝利,任顺祥,林莉.广东省烟粉虱蚜小蜂种类及种群动态调查初报[J].昆虫知识, 2004, 41(4): 333-335.
    邱君志,黄志鹏,潘洁茹.昆虫病原真菌粉虱座壳孢对烟粉虱侵染行为的初步研究[J].菌物学报, 2004, 23(1): 115-121.
    万方浩,李保平,郭建英主编.生物入侵:生物防治篇[M].北京:科学出版社, 2008.
    万方浩,郑小波,郭建英主编.重要农林外来入侵物种的生物学与控制[M].北京: 科学出版社, 2005.
    杨星科.关于大草蛉的学名及有关问题的讨论[J].昆虫学报, 1998, 41(1): 106 -107.
    姚松林,任顺祥,黄振.烟粉虱天敌日本刀角瓢虫的捕食行为[J].应用生态学报, 2005, 16(3): 509-513.
    余金咏,蓝超跃,吴伟坚.中华微刺盲蝽对烟粉虱的捕食功能反应[J].湖北农学院学报. 2003, 23(1): 5-7.
    臧连生,刘银泉,刘树生, 2005.一种适合粉虱实验观察的新型微虫笼.昆虫知识, 42(3): 329-331.
    张芝利.关于烟粉虱大发生的思考.北京农业科学,2000,18 (增刊): 1-3.
    Abd-Rabou S. Inundative release of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) for the control of Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) on outdoor crops. Acta Phytopathologica et Entomologica Hungarica, 1998, 33:389-394.
    Barnadas I., Gabarra R., Albajes R. Predatory capacity of two mirid bugs preying on Bemisia tabaci [J]. Entomol.Exp. Appl., 1998, 86: 215-219.
    Barro P J, Felice D & John T W H et al. Phylogenetic relationships of the world populations of Bemisia tabaci (Gennadius) using ribosomal ITSI. Molecular Phylogenetics and Evolution, 2000, 16(1): 29-36.
    Briggs CJ, Collier TR. 2001. Autoparasitism, interference, and parasitoid-pest population dynamics. Theoretical Population Biology, 60: 33- 57.
    Briggs CJ. 1993. Competition among parasitoid species on a stage-structured host and its effect on host suppression. American naturalist, 141: 372- 397.
    Briggs CJ, Collier TR. 2001. Autoparasitism, interference, and parasitoid-pest population dynamics. Theoretical Population Biology, 60: 33- 57.
    Burger J. M. S., Hemerik L., van Lenteren J. C., Vet L. E. M., Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encarsia formosa. OIKOS 106: 117-130 (2004).
    Cook M.J.W. Bemisia tabaci an update 1986~1992 on the cotton whitefly with an annotated bibliography[M]. C.A.B. Int.Inst.BiolControl, Silwood Park, Ascot, Berks, 1993, 78.
    Cranshaw, W, Sclar, D C and Cooper, D. A review of 1994 pricing and marketing by suppliers of organisms for biological control of arthropods in the United States. Biol.Control, 1996, 6: 291-296.
    Castane C, Alomar O, Goula M., et al. Natural populations of Macrolophus caliginosus and Dicyphus tamaninii in the control of the greenhouse whitefly in tomato crops[J]. Bull. IOBC/WPRS, 2000, 23: 221-224.
    Collier TR, Kelly S, Hunter MS. 2002. Egg size, intrinsic competition, and lethal interferene in the parasitoids Encarsia pergandiella and Encarsia formosa. Biological Control, 23: 254- 261.
    Collier TR, Hunter MS. 2001. Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia. Oecologia, 129: 147- 154.
    Collier T. R., Hunter M. S., Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia Sophia. Oecologia 129:147–154 (2001).
    Culotta E. 1991. Biological immigrants under fire. Science, 254: 1444-1447.
    Dean D.E, Schuster D.J. Bemisia argentifolii (Homoptera: Aleyrodidae) and Macrosiphum euphorbiae (Homoptera: Aphididae) as prey for two species of Chrysopidae [J]. Environ. Entomol, 1995, 24: 1562-1568.
    DeBach P. 1966. The competitive displacement and coexistence principles. Annual Review of Entomology, 11: 183- 212.
    De Barro PJ, Coombs MT. 2008. Post-release evaluation of Eretmocerus hayati Zolnerowich and Rose in Australia. Bulletin of Entomological Research, 24: 10.1017/S0007485308006445.
    De Barro P J, Coombs M T. Post-release evaluation of Eretmocerus hayati Zolnerowich and rose in Australia [J]. Bulletin of Entomological Research, 2009, 99: 193-206.
    Ellers J, van Alphen JJM. 1997. Life history evolution in Asobara tabida: Plastieity in allocation of fat reserves to survival and reproduction. Journal of Evolutionary Biology, 10: 771- 785.
    EI-Banhawy E M, Hafez S M, Saber S A. Effect of the nymph prey density of the two spotted spide mite Tetranychus urticae Koch (Acari: Phytoseiidae) on the consumption and reproduction rates of the predacious mite Cydnoseius negevi in absence and presence of nymphs of the whitefly Bemisia tabaci (Genn.). Anz Schaedlingskd. Pflanzenschutz, 1999, 72: 55-56.
    Fransen J.J. In whiteflies: their Bionomics. Pest status and management (Gerling D, ed.) [J]. Intercept, Andover, 1990, 187-210.
    Gerling D. Natural enemies of Bemisia tabaci, biological characteristics and potential as biological control agents: A review [J]. Agric. Ecosyst. Environ, 1986, 17 (12): 99-110.
    Gerling D. Approaches to the biological control of whiteflies [J]. Flor.Entomol. 1992, 75(2): 446-456.
    Gordon R.D. The Coccinellidae of America North of Mexico[J]. NewYork Entomol.Soc., 1985, 93(1): 891-912.
    Gerling D, Alomar O and Arno J. Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection, 2001, 20: 779-799.
    Gerling D. Studies with whitefly parasites of southern California Encarsia pergandiella Howard (Hymenoptera: Aphelinidae). Can. Entomol, 1966, 98: 707-724.
    Goolsby JA, Ciomperlik MA, Kirk AA. 2000. Predictive and empirical evaluation for parasitoids of Bemisia tabaci (Biotype“B”), based on morphological and molecular systems. In: 4th International Hymenopterists Conference. CSIRO, Collingwood, Victoria, Australia. 347-358.
    Goolsby JA, De Barro PJ, Kirk AA. 2005. Post-release evaluation of biological control of Bemisia tabaci biotype“B”in the USA and the development of predictive tools to guide introductions for other countries. Biological Control, 32: 70–77.
    Gerling D., Rejouan N., Age-related pupal defenses against congeneric internecine activity in Encarsia species. Entomologia Experimentalis et Applicata 110: 87-93 (2004).
    Godfray HCJ. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, NJ.
    Gerling, D. Studies with whitefly parasites of southern Califomia. II. Eretmocerus californicus Howard (Hym.: Aphelinidae) [J]. Canadian Entomologist. 1966, 98: 1316-1329.
    Goolsby J.A., Ciomperlik M. Release and recovery of exotic parasitoids of Bemisia tabaci in the Lower Rio Grande Valley of Texas. In: Gould J, Hoelmer K,
    Goolsby J. eds. Classical Biological Control of Bemisia tabaci in the United States. A Review of Interagency Research and Implementation. Progress in Biological Control Vol.4[M]. Amsterdam, Netherlands: Springer Netherlands, 2008. 179-189.
    Giron D, Rivero A, Mandon N, Darrouzet E, Casas J. 2002. The physiology of host-feeding in parasitic wasps: implications for survival. Functional Ecology, 16:750-757.
    Heinz K.M, Brazzle J.R, Pickett C.H., et al. Predatory beetle may suppress silverleaf whitefly [J]. Calif. Agric., 1994, 48: 35-40.
    Hoelmer K.A., Osborne L.S, Yokomi R K.Reproduction and feeding behavior of Delphastus pusillus (Coleoptera: Coccinellidae) a predator of Bemisia tabaci (Homoptera: Aleyrodidae) [J]. Econ.Entomol, 1993, 86: 322-329.
    Heinz K.M. & Nelson J.M.Interspecific interactions among natural enemies of Bemisia in an inundative biological control program [J]. Biological control, 1996, 6: 384-393.
    Hoelmer K.A, Kirk A.A. An overview of natural enemy explorations and evaluations for Bemisia in the US[J]. Bull.IOBC/WPRS, 1999, 22: 109-112. Heinz K M and Zalom F G. Performance of the predator Delphastus pusillus on
    Bemisia resistant and susceptible tomato lines. Entomol Exp Appl, 1996, 81: 345-352.
    Huang J, Polaszek A. A revision of the Chinese species of Encarsia Forster: parasitoids of whiteflies, scales and aphids [J]. Nat. Hist, 1998, 32: 1825-1966.
    Hoddle M S and van Driesche R G. Evaluation of inundative release of Eretmocerus eremicus and Encarsia formosa Beltsville strain in commercial greenhouses for control of Bemisia argentifolii (Homoptera: Aleyrodidae) on Poinsettia stock plants. J. Econ. Entomol, 1999, 92(4): 811-824.
    Hoddle M.S., van driesche R.G., Sanderson J.P. Biology and use of the whitefly parasitoid Encarsia formosa[J]. Ann. Rev. Entomol., 1998, 43: 645-669.
    Hussey N.W. Notes on a fungus parasitic on greenhouse whitefly [J]. Plant Pathology, 1958, 7: 71.
    Heimoei GE, Collier TR. 1996. The evolution of host-feeding behavior in insect parasitoids. Biological Reviews, 71: 373-400.
    Hoddle MS, Syrett P. 2002. Realizing the potential of classical biological control. In: Hall GJ, Schwalble CP. Invasive Arthropods in Agriculture Problems and Solutions. Enfield, USA: Science Publishers, Inc. 395-424.
    Hassell MP, Waage JK, May RM. 1983. Variable sex ratios and their effect onhost–parasitoid dynamics. Journal of Animal Ecology, 52: 889- 904.
    Hofsvang T. 1990. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomologica Bohemoslovaca, 87: 161- 175.
    Holt RD, Hochberg ME. 2001. Indirect interactions, community modules and biological control: a theoretical perspective. In: Wainberg E, Scott JK, Quimby PC. Evaluation indirect ecological effects of biological control. London: CABI Publishing. 13-37.
    Hoelmer KA. 1996. Whitefly parasitoids: can they control field populations of Bemisia. In: Gerling D, Mayer RT. Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Intercept Ltd., Andover, Hants, UK. 451-476. De Barro PJ, Coombs MT. 2009. Post-release evaluation of Ere.
    Headrick D V, Bellows T S, Perring T M. Development and Reproduction of a
    Population of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on Bemisia argentifolii (Homoptera: Aleyrodidae) [J]. Environmental Entomology. 1999, 28(2): 300-306.
    Jones W.A, Greenberg S.M.Suitability of Bemisia argentifolii (Homoptera: Aleyrodidae) instars for the parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae)[J]. Environ. Entomol, 1998, 27(6): 1569-1573.
    Kirk A.A., Thistlewood H.Development of host specificity tests for predators as biological control agents: an example for Clitostethus arcuatus (Rossi) (Coleoptera: Coccinellidae) on Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) B biotype species complex [J]. Bull.IOBC/ WPRS, 1999, 22-33.
    Kakehashi M, Suzuki Y, Iwasa Y. 1984. Niche overlap of parasitoids in host-parasitoid host systems: its consequence to single versus multiple introduction controversy in biological control. Journal of Applied Ecology, 21: 115- 131.
    Kirk A.A., Lacey L.A., Goolsby J.A. Foreign exploration for insect natural enemies of Bemisia for use in biological control in the USA: a successful program. In: Gould J, Hoelmer K, Goolsby J. eds. Classical Biological Control of Bemisia tabaci in the United States. A Review of Interagency Research andImplementation. Progress in Biological Control Vol.4 [M]. Amsterdam, Netherlands: Springer Netherlands, 2008. 17-31.
    Lenteren J C van, Drost Y C, van Roermund H J W et al. Aphelinid parasitoids as sustainable biological control agents in greenhouses. J Appl. Entomol, 1997, 121: 473-485.
    Legaspi J C, Legaspi Jr. B C, Meagher Jr. R L, et al. Evaluation of Serangium parcesetosum (Coleoptera: Coccinellidae) as a biological control agent of the silverleaf whitefly (Homoptera: Aleyrodidae). Environ. Entomol, 1996b, 25: 1421-1427.
    Lockwood J L, Hoopes M F, Marchetti M P. Invasion Ecology[M]. Oxford: Blackwell Publishing, 2007.
    Liu T X and Stansly A. Oviposition, development, and survivorship of Encarsia pergandiella (Hymenoptera: Aphelinidae) in four instars of Bemisia argentifolii (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am., 1996, 89(1): 96-102.
    Lacey L.A., Kirk A.A.Foreign exploration for natural enemies of Bemisia tabaci and implementation in integrated control programs in the United States (Association Nationale de Protection des Plantes, 1993), 1993, 35-160.
    Lockwood JL, Hoopes MF, Marchetti MP. 2007. Invasion Ecology. Blackwell Publishing, Oxford.
    Medae D.L, Byrne D.N. The use of Verticillium lecanii against subimaginal instars of Bemisia tabaci [J]. Invertebr Pathol, 1991, 57: 296-298.
    Myers JH, Higgens C, Kovacs E. 1999. How many insect species are necessary for the biological control of insects? Environmental Entomology, 28: 541-547.
    May RM, Hassell MP. 1981. The dynamics of multiparasitoidhost interactions. American naturalist, 117: 234- 261.
    Murdoch WW, Briggs CJ, Collier TR. 1998. Biological control in insects: implications for theory in population ecology. In: Dempster JP, McLean IFG (eds) Insect populations in theory and practice. Kluwer Academic, Dordrecht, pp 167- 186.
    Mangel M. 1987. Oviposition site seleetion and clutch size in insects. Journal ofMathematical Biology, 2: 157- 172.
    Mills NJ, Getz WM. 1996. Modelling the biological control ofinsect pests: A review ofhost–parasitoid models. Ecological Modelling, 92: 121- 143.
    Nordlund D.A., Legaspi J.C. Whitefly predators and their potential for use in biological control. Intercept, Andover, UK, 1996, 499-523. Nomikou M, Janssen A, Schraag R et al. Phytoseiid predators as potential biological
    control agents for Bemisia tabaci. Exp. Appl. Acarol, 2001, 25: 271-291. Onillon J C, Maignet P and Cocquempot, C. Premieres resultats sur I’efficacite d’Encarsia pergandiella (Hymenopt., Aphelinidae) dans le controle de Bemisia
    tabaci (Homopt., Aleurodidae) en serres de tomate. Bull. IOBC/WPRS, 1994, 17: 71-80.
    Osborne L.S, Landa Z.Biological control of whiteflies with entomopathogenic fungi [J]. FL. Entomol, 1992, 75: 456-471.
    Osborne L.S, Landa Z.Biological control of whiteflies with entomopathogenic fungi [J]. FL. Entomol., 1992, 75: 245-372.
    Pimentel D. ed. 2002. Biological invasions: Economic and Environmental Costs of Alien Plant.
    Pemberton CE, Willard HF. 1918. Interrelations of fruitfly parasitoids in Hawaii. Journal of Agricultural Research, 12: 285- 303.
    Quicke DLJ. 1997. Introduction to the parasitic Hymenoptera. In parasitic Wasps. Chapman & Hall press, 1- 18.
    Ren S.X., Wang Z.Z., Qiu B.L, et al. The pest status of Bemisia tabaci in China and nonchemical control strategies[J]. Entomologia Sinica, 2001, 8(3): 279-285.
    Ramos E.Q., Alves S.B., Tanzini M.R.et al. Susceptibilidade de Bemisia tabaci a Beauveria bassiana en condiciones de laboratorio [J]. Manejo Intgrado de Plagas, 2000, 56: 65-69.
    Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffe BA. 1995. Intraguild predation among biological-control agents: theory and evidence. Biological Control, 5:303- 335.
    Royer L, Fournet S, Brunel E, Boivin G. 1999. Intra- and interspecific hostdiscrimination by host-seeking larvae of coleopteran parasitoids. Oecologia, 118: 59- 68.
    Senior L.J, Mcewen P.J. Laboratory study of Chrysoperla carnea (Stephens) (Neuropt, Chrysopidae) predation on Trialeurodes vaporariorum (Westwood) (Hom, Aleyrodidae)[J]. Appl. Entomol, 1998, 22: 99-101.
    Schuster D J and Price J F. Parasitization of Bemisia argentifolii (Hom: Aleyrodidae) by Encarsia pergandiella (Hym: Aphelinidae). Entomophaga, 1996, 41(1): 95~-103.
    Smith P. Control of Bemisia tabaci and potential of Paecilomyces fumosoroserus as a biopesticide [J]. Biocontrol News and Information, 1993, 14: 71-78.
    Sax DF, Stachowicz JJ, Gaines SD. 2005. Species Invasions: Insight into Ecology, Evolution, and Biogeography. Sinauer Associates, Inc. Publishers, Massachusetts.
    Strong DR, Pemberton RW. 2000. Biological control of invading species-risks and reform. Science, 288: 1969-1970.
    Smith HS. 1929. Multiple parasitism: its relation to the biological control of insect pests. Bulletin of Entomological Research, 20: 141- 149.
    Stephens DW, Krebs JR. 1986. Foraging theory. Princeton University Press, Preceton, N.J.
    Sax D F, Stachowicz J J, Gaines S D. Species Invasions: Insight into Ecology, Evolution, and Biogeography[M]. Massachusetts: Sinauer Associates, Inc. Publishers, 2005.
    Strong D R, Pemberton R W. Biological control of invading species-risks and reform[J]. Science, 2000, 288: 1969-1970.
    Tenhumberg B, Siekmann G, Keller MA. 2006. Optimal time allocation in parasitic wasps searching for hosts and food. OIKOS, 113: 121-131.
    Turnbull AL, Chant DA. 1961. The practice and theory of biological control in Canada. Canadian journal of zoology, 39: 697- 753.
    Tauber M.J., Tauber C.A., Daane K.M., et al. Commercialization of predators; recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla) [J]. Am.Entomol, 2000, 46: 26-38.
    Van Lenteren JC. 1981. Host discrimination by parasitoids. In: Semiochemicals, their role in pest control. D.A. Nordlund et al. (eds.). Wiley, New York: pp. 153-179.
    Van Baaren J, Boivin G, Nenon JP. 1994. Intra- and interspecific host discrimination in two closely related egg parasitoids. Oecologia, 100: 325- 330.
    Vianen A van,Lenteren J C van. Increasing the number of ovarioles of Encarsia formosa: A possibility to improve the parasite for biological control of the greenhouse whitefly Trialenrodes vaporariorum [J]. Med Fac Landbouww Rijksuniv Gent, 1982, 47(2): 523-531.
    Wraight S.P., Carruthers R.I. Bradley C.A.et al. Pathogenicity of the entomopathogenic fungi Paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii[J]. Invertebr Pathol, 1998, 71: 217-226.
    Wraight S.P, Carruthers R.I., Bradley C.A.et al. Pathogenicity of the entomopathogenic fungi Paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii [J]. Invertebr.Pathol, 1998, 71: 217-226.
    Yano E. 1987. Population responses of Encarsia formosa to the greenhouse whitefly and their role in population dynamics of whitefly- E. formosa system. Bull. IOBC/WPRS 1987/x/2: 193-197.
    Zwolfer H. 1971. The structure and effect of parasite complexes attacking phytophagous host insects. In: denBoer PJ, Gradwell GR (eds) Dynamics of populations: proceedings of the advanced study institute on“dynamics and numbers in populations”Oosterbeck 1970. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp 405- 418.
    Zang LS, Liu TX. 2008. Host-feeding of three parasitoid species on Bemisia tabaci biotype B and implications for whitefly biological control. Entomologia Experimentalis et Applicata, 10.1111/j.1570-7458.2008.00667.x.
    Zang, L.S., Liu, T.X. Host feeding of three whitefly parasitoid species on Bemisia tabaci B biotype, with implication for whitefly biological control [J]. Entomology Experimental Application. 2008, 127: 55–63.
    Zang, L.S., Liu, T.X., Zhang F., Shi S.S., Wan F.H. Mating and host density affecthost feeding and parasitism in two species of whitefly parasitoids [J]. Insect Science (2010) 00, 1–6, DOI 10.1111/j.1744-7917.2010.01382.x
    Zolnerowich G, Rose M. 1998. Eretmocerus Haldehan (Hymenoptera: Aphelinidae) imported and released in the United States for control of Bemisia (tabaci complex) (Homoptera: Aleyrodidae). Procedings of the Entomological Society of Washington, 100: 310-323.
    Zolnerowich G, Rose M. 2004. Eretmocerus rui n. sp. (Hymenoptera: Chalcidoidea: Aphelinidae), an exotic natural enemy of Bemisia (tabaci group) (Homoptera: Aleyrodidae) released in Florida. Florida Entomologist, 87: 283-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700