用户名: 密码: 验证码:
主次框架连接方式及巨型梁设置对巨型框架结构动力响应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨型框架结构是一种新型的结构体系,它不但空间划分自由灵活、传力明确、整体性能好,并且还可以充分发挥材料和结构的性能,减少材料用量,降低工程造价等。因此,对巨型框架结构体系展开研究,具有重要的实际意义和理论价值。
     通过大型通用有限元分析软件SAP2000对巨型框架结构进行了地震作用下的有限元建模。针对不同的主次框架梁柱连接方式、巨型梁柱刚度比、巨型梁的数量和位置等参数,设置不同的计算方案,进行了模态分析和两条天然地震波、一条人工波作用下的动力时程分析,得出在不同情况下的结构动力特性、变形和内力分布的特点和规律,为巨型框架结构的抗震设计提供有益的参考。
     主次框架连接方式的改变对结构的周期和变形能力影响很小,当结构由刚接变为半刚性连接、铰接时,周期略微增加,顶点位移适当增加,层间位移角变化不大,但对内力分布有一定的影响,楼层剪力有下降趋势,铰接时最低。巨型梁柱刚度比的增加使结构的周期、顶点最大位移和最大层间位移角逐渐减小,但最大楼层剪力逐渐增大。
     巨型梁数量的增加使结构的周期和顶点位移逐渐减小,但楼层剪力逐渐增大。从结构的侧移曲线看出,仍然呈弯剪型,不会随着数量的增加而改变。巨型梁数量越多,且越靠近底部,底部楼层剪力越大。
     巨型梁位置的上移使结构的最大自振周期逐渐增大,在结构底部和中部时增加幅度很小,结构顶点位移显著增大,楼层剪力逐渐变小,但巨型梁设置在顶部时,楼层剪力相差很小。结构的最大层间位移角主要集中在结构的中下部,但巨型梁设置一个且靠近结构的底部时,最大层间位移角在结构的上部。
Mega frame structure is a new type of structure system, which not only can make the space division freedom and flexible, power transmission clear freedom, and have good overall performance, also can give full play to the performance of materials and structure to reduce the materials consumption and cut down engineering cost, etc. Therefore, do some research about the mega frame structure system has important practical significance and theoretical value.
     Through large general finite element analysis software SAP2000, the finite element modeling for giant frame structures is made to analyse the action of earthquake.In view of the different primary and secondary beam-column connection mode, giant beam-column stiffness ratio and the parameters for the mega beam about quantity and position, the different calculation schems are set up to conduct the modal analysis and the dynamic time history analysis under the action of two natural vibration, a artificially wave power and conclude the structural dynamic characteristics, deformation and characteristics and laws for internal force distribution in different circumstances, to provide the beneficial reference in the aseismic design for mega frame.
     The change of the connection mode for primary and secondary frame have little effect on the structure of cycle and deformation capacity, when connections for the structure change from rigid connections to semi-rigid connections, hinged connections, cycle increase slightly, vertex displacement increase appropriately, interlayer displacement angle slightly change, but the internal force distribution have certain effect, floor shear have downside and get to minimum when hinged. When giant beam-column stiffness ratio increase, structure of the cycle, vertex maximum displacement and the maximum for interlayer displacement angle decrease gradually, but the maximum for shear increase gradually.
     The increase in the number of mega beam make structure cycle and vertex displacement gradually decrease, but floor shear gradually increase. From the structure of side moving curve, it is still bending shear type which can't change along with the increase in the number of mega beam. When the number of mega beam are greater and mega beam is closer to the bottom, the bottom floor shear is bigger.
     Mega beam position is moved up to make structure vibration cycles increase gradually, the increase is little in the bottom and middle of structure, while structure vertex displacement increase significantly and floor shear gradually becomes smaller, but floor shear is very small different between floor mega beam setted on top and setted on middle. The maximum for interlayer displacement angle of structure is mainly located in the mid-lower of structure,but the maximum for interlayer displacement angle of structure is located in the upside of structure when it is set a mega beam which locacted near the bottom.
引文
[1]Marsh J W. Steel structures:performance and design code developments[J]. Engineering Journal,1993,30(20):56~65
    [2]徐培福,傅学怡.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005
    [3]赵西安.钢筋混凝土高层建筑结构设计[M].北京:中国建筑工业出版社,1993
    [4]包世华,方鄂华.高层建筑结构设计[M].北京:清华大学出版社,1990
    [5]徐培福.高层建筑发展综述[J].建筑科学,1987(4):3-9
    [6]Khan Fazlur R. Recent development and future of high rise buildings. National conference on tall buildings, New Delhi,1973:106-127
    [7]惠卓.巨型框架结构的计算理论及抗震性能的研究[D].南京:东南大学博士学位论文,1998
    [8]L E罗伯逊.钢结构在高层建筑中的作用[J].顾慰祖译.钢结构,1990(1):42-51
    [9]何广乾.高层建筑的结构体系.第十三届全国高层建筑结构学术交流会论文集,1994:1-10
    [10]赵西安.高层建筑结构实用设计方法[M].上海:同济大学出版社,1998
    [11]Hu Qingchang, Design and Experimental Research of Mega-strueture Used for Tall Residential Building,, Eleventh World Conf. On Earthquake Engineering, Mexico,1996
    [12]刘大海,杨翠如.高层建筑结构方案优选[M].北京:中国建筑工业出版社,1996
    [13]李君,张耀春.超高层结构的新体系—巨型结构[J].哈尔滨建筑大学学报,1997,30(6):21-27
    [14]惠卓,秦卫红,吕志涛.巨型建筑结构体系的研究与展望[J].东南大学学报,2000,30(4):1-8
    [15]沈祖炎,陈荣毅.巨型结构的应用与发展[J].同济大学学报,2001,29(3):258-262
    [16]胡庆昌,张美励,孙金穉,等.高层住宅中混凝土巨型框架结构体系应用的研究[J].建筑结构,1998(10):1-9
    [17]程晓辉,钱稼茹,方鄂华.钢筋混凝土巨型框架节点受力分析及抗剪计算[J].清华大学学报(自然科学版),2000,40(6).
    [18]何国松,方鄂华.住宅型钢筋混凝土巨型框架节点试验研究[J].土木工程学报,2000,33(2):13-18
    [19]何国松,方鄂华,钱稼茹.巨型框架节点的非线性有限元分析[J].清华大学学报(自然科学版),2000,40(11).
    [20]惠卓.巨型框架结构的计算理论及抗震性能的研究:[东南大学博士学位论文].南京:东南大学土木工程学院,1998,71-83
    [21]张宇峰,舒赣平,吕志涛,等.巨型框架结构的抗震性能和振动台试验研究[J].东南大学学报(自然科学版),2004,34(5).
    [22]贾彬,王汝恒,王钦华.巨型框架结构风荷载特性的风洞试验研究[J].工业建筑,2004,34(8).
    [23]袁广林,张宇峰,舒赣平,等.巨型框架结构局部模型低周反复加载试验研究[J].建筑结构,2003,33(7).
    [24]PouangareCC, Connor JJ. New structural systems for tall buildings.The spaee-truss concept.The StrUctural Design of Tall Buildings.1995,(4):155-168.
    [25]何广乾.高层建筑的结构体系.第十三届全国高层建筑结构学术交流会论文集,1994:1-10
    [26]左振波,左振明,左春仁.高层建筑巨型框架结构应用及其受力特征.大连大学学报,2003,24(2):35-37
    [27]惠卓.巨型框架结构的计算理论及抗震性能的研究:[东南大学博士学位论文].南京:东南大学土木工程学院,1998,11-60
    [28]廖超.钢筋混凝土巨型框架结构受力性能分析[D].长沙:湖南大学,2006
    [29]沈蒲生,谭征,廖超,等.钢筋混凝土巨型框架结构的受力性能研究[J].建筑结构学报(增刊1),2006(27):328-335.
    [30]沈蒲生.高层建筑结构设计[M].北京:中国建筑工业出版社,2006
    [31]廖超,沈蒲生.巨型框架静力作用下受力性能分析[J].湖南大学学报自然科学版(增刊),2005,32(3):128-131.
    [32]沈蒲生,孟焕陵,刘杨.水平荷载作用下空腹巨型框架受力性能研究[J].科学技术于工程,2006,6(16)
    [33]周坚,邓思华.巨型框架超高层建筑结构分析[C].第九届建筑工程计算机应用学术会议论文集.1998.
    [34]包世华,龚耀清.超高层建筑空间巨型框架的简化分析.工程力学(增刊),2002.
    [35]唐兴荣.巨型框架结构与框架—剪力墙—巨型框架结构计算.苏州城建环保学院学报,1996,9(4):15-22
    [36]赵西安,徐培福.高层建筑结构的选型构造及简化分析[M].北京:中国建筑工业出版社,1992.
    [37]李正良.钢筋混凝土巨型结构组合体系的静动力分析[D].重庆:重庆大学,1999.
    [38]董军,邓洪洲,王肇民,等.组合巨型框架结构振动特性研究[J].建筑结构,1998(9).
    [39]包世华,龚耀清.超高层建筑空间巨型框架的简化振动计算.建筑结构,2003,33(7):54-56
    [40]包世华,龚耀清.超高层建筑空间巨型框架的重力二阶效应分析.建筑结构,2004,34(6).
    [41]樊丽俭.空间巨型框架结构的自由振动[J].长安大学学报(自然科学版),2004,24(5).
    [42]蓝宗建,邹宏德,梁书亭等.钢筋混凝土巨型框架多功能减振结构地震反应分析.建筑结构学报,2001,22(4):77-89
    [43]Lan Zongjian, Wangxinde, DaiHang, etal. Multifunetional Vibration-absorption RC Mega-frame Structures and Their Seismic Responses[J]. Earthquake Engineering and Struetural Dynamics,2000.29.
    [44]蓝宗建,田玉基,曹双寅等.巨型框架多功能减振结构体系的减振机理及其减振效果分析.土木工程学报,2002,35(6):1-5.
    [45]王勖成.有限单元法.北京:清华大学出版社,2003.
    [46]荣先成.有限单元法.西南交大出版社,2007.
    [47]zienkiewicz, Taylor. The Finite Element Method[M].Mc-Graw-Hill,2005
    [48]Rao.s.s.,The Finite Element Method in Engineering[M].Pergamon Press,1982
    [49]秦荣.计算结构力学[M).北京:科学出版社,2001.
    [50]李君,张耀春.超级元在巨型钢框架结构分析中的应用.哈尔滨建筑大学学报,1999,32(1):38-42.
    [51]秦荣.高层建筑结构分析的QR法[J].广西科学,1994,1(4).
    [52]刘大海,杨翠如,等.高层建筑抗震设计[M].北京:中国建筑工业出版社,1994.5
    [53]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997
    [54]杨溥,李英明,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,Vol.33,No.1
    [55]王亚勇,刘小弟,程民贤.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,4
    [56]Frye M J, Morris G A. Analysis of flexibly connected steel frames. Canadian journal of civil engineering,1975,2(3):280-291
    [57]Krishnamurthy H T, et al. Analytical M-θ cures for end-plate connections. Journal of structural division, ASCE,1979,105 (ST1):133-145
    [58]Richard R M, Abbott B J. Versatile elastic-plastic stress-strain formula. Journal of engineering mechanics division, ASCE,1975,101 (EM4):511-515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700