用户名: 密码: 验证码:
毛细管平面辐射空调动态仿真及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,使用的空调系统,主要通过对流换热的方式来消除室内的热湿负荷,共用低温冷源排除室内的余热和余湿,显热负荷本可以采用高温冷源带走,却与除湿一起共用低温冷源进行处理,造成能源品味上的浪费。毛细管平面辐射空调可以实现温湿度的独立控制,由独立新风系统承担室内的潜热负荷,铺设在顶板或墙壁上的毛细管承担室内的显热负荷。该空调系统不仅节能、舒适,又能保证较好的空气品质。
     本文在分析辐射空调国内外研究现状的基础上,对毛细管平面辐射空调系统房间的新风系统、负荷计算及控制系统等方面进行了研究。得出了适用于这种空调系统负荷计算的方法,为其实际应用提供了一定的理论基础。
     首先,本文讨论了新风除湿和热回收的方式,通过对比得出毛细管平面辐射空调系统使用溶液除湿和溶液热回收,不仅热回收效率高,而且可以得到满足要求的任意新风参数。分析了毛细管平面辐射空调房间湿负荷的来源,得出对于普通办公室,房间的湿负荷主要来源于人员散湿,敞开水面散湿和植物散湿等。
     其次,分析了新风机组启动阶段房间内含湿量和温度的动态变化,提出了新风预除湿时间的概念。并以济南地区为例进行了分析,得出毛细管平面辐射空调系统预除湿时间如果控制在30分钟左右,启动阶段新风机组的新风量为满足人员卫生要求最低新风量的1.3倍;正常运行阶段,满足人员卫生要求的最低新风量就能满足房间的除湿要求。
     再次,建立了毛细管平面辐射空调的动态模型,运用CFD技术,模拟了毛细管平面敷设在房顶上,部分在西墙上,部分在北墙上,全部在墙上四种布置方式下,空调房间与室外环境的换热过程。结果表明:当毛细管全部布置在房间的顶上时,通过外墙、外窗传递的热流密度最小,节能效果最显著,可以节能25%;当空调负荷过大时,部分布置在墙壁上时,节能效果也能达到20%以上。通过数值计算得出毛细管平面辐射空调系统,夏季采用修正系数法计算负荷时,修正系数的取值范围为0.75-0.8。当毛细管全部布置在顶板上时,修正系数取0.75较合适,当有部分敷设在墙面时,根据敷设在墙面面积的大小,可以取0.75~0.8之间不同的修正系数。为毛细管平面辐射空调系统的设计提供了一定的理论基础。
     最后,分析了常用控制方式的优缺点,得出毛细管辐射供冷系统采用间歇性流量控制不仅简单易行,而且节约能源;给出了新风系统、毛细管辐射供冷系统以及毛细管辐射供冷和独立新风复合系统的控制示意图。
At present, the air-conditioning systems remove indoor heat and humidity load mainly by convection heat transfer, and use the same low temperature sources; sensible heat load could have been eliminated by high temperature sources, yet uses the same temperature sources with dehumidification, making energy sources waste in grade. Capillary plane air-conditioning system can make temperature and humidity independent control, indoor latent and sensible heat load are undertaken by dedicated outdoor air system and capillary radiation plane respectively. It is a cozy, energy-efficient air-conditioning system, and could maintain good indoor air quality.
     Based on the research and development in both domestic and overseas on radiation air-conditioning, in this paper studied fresh air system, load calculation and control system of capillary plane air-conditioning. Obtained a method of load calculation that was suitable for this air-conditioning system, this provided a theoretical basis for its practical application.
     Firstly, discussed liquid desiccant dehumidification and heat recovery, obtained that it applied for capillary plane air-conditioning fresh air system, can get higher heat recovery efficiency and any fresh air parameters. Analysis the space moisture load sources of capillary plane air-conditioning, get that it was mainly from human, open-wide water and plants in general office buildings.
     Secondly, analyzed Indoor humidity ratio and temperature dynamic change in fresh air set-up period, and proposed the conception of fresh air pre-dehumidification time. Taking Jinan city as an example, calculated that if pre-dehumidification time was limited in 30 minutes, the volume of fresh air was the 1.3 times of the requirement of personnel and sanitary; in the normal period, the minimum fresh air volume could meet the requirement of room dehumidification.
     Thirdly, established the capillary plane radiation dynamic model, simulated and studied the heat transfer process of air conditioning room and outdoor environment with CFD in unsteady state, when capillary panel laid on the ceiling, part on west wall, part on north wall, on the wall. Based on simulation results found the heat flux through the exterior wall and window was lowest, it could save 25% energy, when capillary panel laid on the ceiling; it also could save more than 20% energy, when parts laid on the wall. According to the numerical calculation results, obtained the capillary plane air-conditioning load correction coefficient was 0.75-0.8 in summer. The correction coefficient was 0.75, when capillary panel laid on the ceiling; it was 0.75-0.8, when parts laid on the wall, this providing a theoretical basis for its design.
     Finally, analyzed advantages and disadvantages of general control strategy, obtained capillary radiation panel with intermittent flow control was simple, practicable and energy conservation. Provided control diagram of the fresh air system, capillary radiation panel cooling system and capillary radiation panel cooling system plus fresh air system.
引文
[1]中国能源网.哥本哈根峰会将召开关键问题存严重分歧[EB/OL], http://www.china5e.com/show.php?contentid=60688,2009-12-07
    [2]中国能源报.2009国际十大能源新闻盘点[EB/OL], http://paper.people.com.cn/zgnyb/html/2009-12/28/content_414072.htm,2009-12-28
    [3]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[M].北京:中国建筑工业出版社,2008:8-70
    [4]科学技术部,社会发展科技司.全民节能减排实用手册[M].北京:社会科学文献出版社,2007:8-15
    [5]国客昌.关于辐射供暖的若干问题.暖通空调设计规范专题说明选编[M].北京:中国计划出版社.1990.
    [6]L.F.Schutrum, G.V.Parmelee, C.M.Humphreys. Heat exchangers in a ceiling panel heated room[J]. ASHRAE Transactions,59:197-204
    [7]I.B.Kilkis. A Simplified Model for Radiant Heating and Cooling Panels[J]. Simulation Practice and Theory,1994,2:61-76
    [8]Richard K.Stand, Ph.D. Investagation of a Condenser-Linked Radiant Cooling System Using a Heat Balance Based Energy Simulation Program[J].ASHRAE,2003:647-655
    [9]Taeyeon Kim, Shinsuke Kato, etc. Indoor cooling/heating Load Analysis Based on Coupled Simulation of Convection, Radiation and HVAC Control[J]. Building and environment,2001, 36:901-908
    [10]Shuzo Murakami, Shinsuke Katoindoor. Climate Design Based on CFD Coupled Simulation of Convection, Radiation, and HVAC Control for Attaining a Given PMV Value[J]. Building and Environment,2001,36:701-709
    [11]Corina stetiu. Energy and Peak Power Savings Potential of Radiant Cooling Systems in US Commercial Buildings[J]. Energy and Buildings,1999,30:127-138
    [12]Koichi Kitagawa, Norilo Komoda. Effect of Humidity and Small Air Movement on Thermal Comfort under a Radiant Cooling Ceiling by Subjective Experimen[J]. Energy and Buildings, 1999,30:185-193
    [13]J.Miriel, L.Serres, A.Trombe. Radiant Ceiling Panel Heating-Cooling Systems: Experimental and Simulated Study of the Performances, Thermal Comfort and Energy Consumptions[J]. Applied Thermal Engineering,2002(22):1861-1873
    [14]Elisabeth Mundt. Displacement Ventilation Systems-Convection Flows and Temperature Gradients[J]. Building and environment,1995,30:129-133
    [15]H.B.Awbi. Energy Efficient:Room Air Distribution. Elsevier Science Ltd,1998:293-299
    [16]H.Xing. A Study of the Air Quality in theBreathing Zone in a Room with Displacement Ventilation[J]. Building and Environment,2001,36:809-820
    [17]Huijuan Xing. Measurement and Calculation of the Neutral Height in a Room with Displacement Ventilation[J]. Building and Environment,2002,37:961-967
    [18]F.Almdari.Chilled Ceilings and Displacement Ventilation[J]. Renewable Energy,1998,15: 300-305
    [19]S.G.Hodder, D.L.Loveday. Thermal Comfort in Chilled Ceiling and Displacement Ventilation Environment:Vertical Radiant Temperature Asymmetry Effects[J]. Energy and Buildings,1998,27:167-173
    [20]Jae-Weon Jeong, Stanley A.Mumma. Ceiling Radiant Cooling Panel Capacity Enhanced by Mixed Convection in Mechanically Ventilated Spaces[J]. Applied Thermal Engineering,2003,23: 2293-2306
    [21]Doosam Song. Study on Cross-Ventilation with Radiational Panel Cooling for Hot and Humid Regions[J]. ASHRAE Transactions,2002:1281-1276
    [22]MacChuer C.R. Analysis and Simulation of Outdoor Reset Control of Radiant Slab Heating Systems[J].ASHRAE Trans,1990,96(1):1283-1287.
    [23]Lim.Jae-Han, Yeo. Myoung-Souk, Kim. KWang-Woo. A Study on the Application of Radiant Floor Cooling System Integrated with the Dehumidification System[C]. Eighth International IBPSA Conference Eindhoven, Netherlands,2003,8
    [24]Stanley A.mumma, Jae-Weon Jeong. Direct Digital Temperature, Humidity and Condensate Control for a Dedicated Outdoor Air-Ceiling Radiant Cooling Panel System[J]. ASHRAE Trans, 2005,111(1):547-558.
    [25]Ryu. Seong-Ryong, Lim. Jae-Han, Yeo. Myoung-Souk, Kim. KWang-Woo. A Study on the Control Methods for the Radiant Floor Heating and Cooling System in Residential Building[J].ASHRAE Trans,2004, Part:106-116.
    [26]马玉奇,刘学来,李永安等.冷却顶板结露问题分析[J].山东建筑大学学报,2007,22(6):537-540
    [27]薛红香.毛细管空调系统舒适性及气流组织的研究[D].山东建筑大学学位论文.2009
    [28]陈启,马一太.辐射顶板空调系统的优势[J].节能技术,2005,23(1):40-43
    [29]黄奕沄,张玲.地板辐射供冷除湿问题的探索[J].暖通空调,2003,33(3):47-51
    [30]胡松涛.冷辐射地板系统的实验研究[J].能源技术,2004,25(2):64-68
    [31]王子介,夏学鹰.地板辐射供冷可行性研究分析[J].暖通空调,2002,31(6):56-58
    [32]李强民.置换通风原理、设计及应用[J].暖通空财,2000,30(5):41-46
    [33]李金华.置换通风条件下室内空气品质研究[J].洁净与空调技术,2005,2:5-8
    [34]赵蕾.低速侧送风的热源效应[D].西安建筑科技大学学位论文.2001
    [35]张强,孟剑辉.置换通风房间通风效率的计算模型及影响因素研究[J].山东省制冷空调学术年会论文集,2005
    [36]赵树海.置换通风房间负荷计算方法及影响因素的研究[D].西安建筑科技大学学位论文.2005
    [37]张帆.置换通风加冷却顶板技术评述[J].建筑热能通风空调,1999,4:31-34
    [38]王倩.冷却顶板与置换通[J].洁净与空调技术,2001,3:18-20
    [39]张行周.置换通风与冷却顶板相结合的空调系统[J].流体机械,2002,30(1):54-56
    [40]李先中.地板供冷/置换通风复合空调系统的可行性探讨[J].建筑热能通风空调,2002,21(4):4-6
    [41]王子介.地板辐射供冷-置换通风的实验研究[J].全国暖通空调制冷学术年会资料集,
    2006.
    [42]江亿,魏庆.带通风末端的模块式水源辐射供冷/供热顶板板[P].中国专利:E0489/00:F28F/12
    [43]孙丽颖、马最良、马景骏.冷却顶板空调系统在我国应用的预测分析[J].哈尔滨商业大学学报.2002,18(6):678-682
    [44]狄洪发、王威、江亿等.辐射顶板的实验研究[J].暖通空调,2000,30(4):5-7
    [45]袁旭东、王鑫和柯莹.地板辐射供冷的控制方法[J].制冷与空调,2007,30(2):41-44
    [46]刘晓华,江亿.温湿度独立控制空调系统[M].北京:中国建筑工业出版社.2006.
    [47]刘栓强,刘晓华,江亿.温湿度独立控制空调系统中独立新风系统的研究(1):湿负荷计算[J].暖通空调,2010,40(1):80-84
    [48]赵荣义,范存养,薛殿华等.空气调节(第三版)[M].北京:中国建筑工业出版社.2000.
    [49]陆耀庆.实用供热空调设计手册(第二版)[M].北京:中国建筑工业出版社,2007
    [50]中国建筑科学研究院,中国建筑业协会建筑节能专业委员会.GB50189-2005公共建筑节能设计
    标准[S].北京:中国建筑工业出版社.2005.
    [51]王建奎,陆麟,曾宪纯.温湿度独立控制系统中最小新风量计算方法研究[J].暖通空调,2010,40(1):29-32
    [52]薛红香.毛细管空调系统舒适性及气流组织的研究[D].山东建筑大学硕士学位论文,2009,6
    [53]熊帅.与辐射冷顶板相结合的独立新风系统的研究[D].湖南大学硕士学位论文,2007,4:24-28
    [54]王福军.计算流体流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:2-122
    [55]康彦青.空气源热泵在西安地区的应用研究[D].长安大学硕士学位论文,2010,5:22-52
    [56]牛爱明,李振江,乔莺.CFD技术在暖通空调领域的应用[J].山西能源与节能,2006,42(3):14-17
    [57]谷现良,加宁,高军等.CFD商业软件与制冷空调[J].制冷学报,2003,42(4):46-48
    [58]C.A.G.Fletcher, I.F.Mayer, A.Eghlimi,etal. CFD as a Building Services Engineering Tool[J]. Architectural Science,2001,2 (3):67-81
    [59]陶文铨.数值传热学(第二版)[M].西安交通大学出版社,2003
    [60]朱颖心.建筑环境学(第二版)[M].中国建筑工业出版社,2005:51-64
    [61]郑慧凡,阎秀英,李安桂等.建筑物空调负荷计算方法研究进展[J].中原工学院学报,2007,18(5):1-5
    [62]单寄平.空调负荷实用计算方法[M].北京:中国建筑工业出版社.1989
    [63]王朋.建筑空调动态负荷计算分析[D].上海交通大学硕士学位论文,2007,1:16-22
    [64]王硕.冷却顶板供热工况室内热环境及人体热舒适实验研究[D].天津大学硕士学位论文,2010,7
    [65]袁旭东,王鑫,柯莹.地板辐射供冷的控制方法[J].制冷与空调,2007,2:41-44
    [66]孟莹.辐射供冷方式的特性及运行控制策略分析[D].河北工程大学硕士学位论文,2004,4:45-52
    [67]陈金花.夏热冬冷地区居住建筑辐射地板系统控制策略的研究[D].重庆大学硕士学位论文,2007,11:20-25
    [68]高小龙.公共建筑的室内环境控制与节能运行管理[D].重庆大学硕士学位论文,2006,10:29-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700