用户名: 密码: 验证码:
基于微流控分析系统的单细胞进样、溶膜、分离和活性氧检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢(H_2O_2)在细胞信号转导过程中充当着第二信使的角色,其在生物体的生理、病理、器官退化等过程中起着关键的调节作用。另外,H_2O_2与其他的活性氧自由基如超氧阴离子(O_2~-.)和羟基自由基(·OH)具有很密切的关系。因此在单细胞水平上对H_2O_2进行检测对于重大疾病的早期诊断、治疗、药物筛选和细胞生理、病理过程的研究有重要的指导意义。
     本论文主要是以实验室自行搭建的微流控芯片单细胞活性氧自动分析仪和高灵敏度激光诱导荧光检测器为基础,利用实验室内部设计合成的新型绿色荧光探针二(对甲苯磺酰基)-二氯荧光素(FS),采用电动门式进样法自动化实现了单细胞进样、单细胞溶膜、高效电泳分离和胞内H_2O_2的定量检测。本论文主要含有两部分,内容如下:
     第一章是引言,主要是对多年来单细胞组分分析所涉及到的操作单元,包括单细胞操纵手段、衍生方法、溶膜手段和检测手段进行了概述,然后对微流控芯片在单细胞组分分析中的应用进行了详细的综述,并阐述了近年来兴起的高通量单细胞分析技术。
     第二章建立了基于电动门式进样方法的微流控系统首次实现了单个肝癌HepG2细胞内H_2O_2的定量检测。将经荧光探针FS孵育过的细胞引入微流控芯片样品池,利用电动门式进样和激光诱导荧光检测器在简单十字芯片上自动化实现了单细胞进样(细胞采样和单细胞捕获)、溶膜、电泳分离和单细胞内H_2O_2的定量检测。该方法主要包含三个时段:第一时段(细胞采样阶段),样品池中的细胞在电场力的驱动作用下流经十字交叉口后流向样品废液池;第二时段(单细胞装载阶段),改变电压条件会有单个细胞被捕获进入分离通道;第三时段(细胞溶膜和电泳分离阶段),被捕获的单个细胞在高压电场的作用下发生快速溶膜和电泳分离,并由激光诱导荧光检测器所检测,而样品池中的其他细胞在电场力的驱动作用下仍然流经十字交叉口后流向样品废液池,而不会对分离分析造成干扰。经该方法检测到的单个肝癌HepG2细胞内H_2O_2的平均含量为16.09±9.84 amol(n =15)。该方法具有简单、快速、易于实现、自动化和集成化程度高等优点,为自动化定量分析单细胞内的其他组分提供了一种新的途径。
Hydrogen peroxide (H_2O_2) plays a pivotal role as a second messenger in cellular signaling, and mounting evidence supports its role as a small molecule mediator of physiology, aging, and diseases in organisms. Additionally, H_2O_2 is also closely linked to other free radicals, such as superoxide (O_2~–) and hydroxyl radical (·OH). Therefore, to determine H_2O_2 at single cell level is deemed to be important for biochemistry, molecular cell biology, drug discovery and diagnosis of diseases at early stage.
     In this paper, a versatile programmable eight-path-electrode power supply (PEPS) and a laser-induced fluorescence detector (LIFD)-based microfluidic system for detecting H_2O_2 in single cells was developed by using a home-synthesized fluorescent probe bis(p-methylbenzenesulfonyl)dichloro?uorescein (FS) and electrokinetic gated injection. Two chapters are included as follows:
     In the chapter one, first of all, an overview of recent research achievements in single-cell component analysis was provided. The review focused on chip-based single cell manipulation, derivation, cytolysis technology and detection methods. Then the application of microfluidic chip in the single-cell component analysis was reviewed in detail. Finally, the work for single cell high-throughput analysis on the microfluidic chip was summarized.
     In the chapter two, a microfluidic system for the first time to determine H_2O_2 in individual HepG2 cells based on the electrokinetic gated injection was developed. The fluorescent probe FS, was employed to label intracellular H_2O_2 in the intact cells. On a simple cross microchip, multiple single-cell operations, including single cell injection (cell sampling, single cell loading), cytolysis, electrophoresis separation and detection of H_2O_2, were automatically carried out using the electrokinetic gated injection and laser-induced fluorescence detection (LIFD). This method contained three steps: In single cell injection step, single cells from reservoir S could enter into the sample channel, S-C, pass through the cross, C, and flow toward reservoir SW; In single cell loading step, one cell would be loaded into the separation channel, C-BW. Cytolysis and electrophoresis separation were immediately carried out under the high electric field in the third step. With the use of this method, the average content of H_2O_2 in single HepG2 cells was found to be 16.09±9.84 amol (n =15). This developed method was simple, fast, and sensitive. It potentially allows determination of other intracellular constituents at single-cell level.
引文
[1] Elsasser W M. Outline of a theory of cellular heterogeneity[J]. Proceedings of the National Academy of Sciences. 1984, 81(16): 5126-5129.
    [2]高体玉,冯军,慈云祥.单个活细胞分析的研究进展[J].科学通报. 1998, 43(7): 673-681.
    [3] Altschuler S J, Wu L F. Cellular Heterogeneity: Do Differences Make a Difference[J]? Cell. 2010, 141(4): 559-563.
    [4]翁前锋,许国旺.毛细管电泳单细胞分析方法及应用进展[J].生命科学仪器. 2004, 2(1): 3-10.
    [5] Roman G T, Chen Y L, Viberg P, Culbertson A H, Culbertson C T. Single-cell manipulation and analysis using microfluidic devices[J]. Analytical and Bioanalytical Chemistry. 2007, 387(1): 9-12.
    [6] Sims C E, and Allbritton N L. Analysis of single mammalian cells on-chip[J]. Lab on a Chip. 2007, 7(4): 423-440.
    [7]朱杰,孙润广.激光光镊技术在单细胞、单分子科学中的应用研究[J].激光杂志. 2005, 26(6):90-93.
    [8] Lu X, Huang W H, Wang Z L, Cheng J K. Recent developments in single-cell analysis[J]. Analytica Chimica Acta. 2004, 510(2): 127-138.
    [9]罗国安,王义明.单细胞水平的分析方法研究及进展[J].分析化学. 1995, 23(8): 953-959.
    [10] Matioli G T, Niewisch H B, Electrophoresis of hemoglobin in single erythrocytes. [J].Science. 1965, 150(705): 1824-1826.
    [11] Osborne N N. Do snail neurones contain more than one neurotransmitter[J]? Nature. 1977, 270(5638):622-623.
    [12] Ubezio P, Civoli, F. Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells[J]. Free Radical Biology and Medicine. 1994, 16(4): 509-516.
    [13] Cossarizza A, Ferraresi R, Troiano L, Roat E, Gibellini L, Bertoncelli L, Nasi, M, Pinti M. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry[J]. Nature Protocols. 2009, 4(12):1790-1797.
    [14] Belousov V V, Fradkov A F, Lukyanov K A , etc. Genetically encoded ?uorescent indicator for intracellular hydrogen peroxide[J]. Nature Methods. 2006, 3(4) 281-286.
    [15] Miller E W, Tulyathan O, Isacoff E Y, Chang C J. Molecular imaging of hydrogen peroxide produced for cell signaling[J]. Nature Chemical Biology. 2007, 3(4):263-267.
    [16] Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L. Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale[J]. Science. 1991, 251(5000):1468-1470.
    [17] Orwar O, Fishman H A, Ziv N E, Scheller R H, Zare R N. Use of 2,3-Naphthalenedicarboxaldehyde Derivatization for SinglelCell Analysis of Glutathione by Capillary Electrophoresis and Histochemical Localization by Fluorescence Microscopy[J]. Analytical Chemistry. 1995, 67(23): 4261-4268.
    [18] Jin W R, Li X J, Gao N. Simultaneous Determination of Tryptophan and Glutathione in Individual Rat Hepatocytes by Capillary Zone Electrophoresis with Electrochemical Detection at a Carbon Fiber Bundle-Au/Hg Dual Electrode[J]. Analytical Chemistry. 2003, 75(15): 3859-3864.
    [19] Xie W J, Xu A S, Yeung E S. Determination of NAD+ and NADH in a Single Cell under Hydrogen Peroxide Stress by Capillary Electrophoresis[J]. Analytical Chemistry. 2009, 81(3): 1280-1284.
    [20] Manz A, Graber N, Widmer H M, Miniaturized total chemical analysis systems,A novel concept for chemical sensing [J]. Sensors and Actuators B. 1990, 1(1/6): 244-248.
    [21]林秉承,秦建华.微流控芯片实验室[M].北京:科学出版社. 2006, 71-73.
    [22] El-Ali J, Sorger P K, Jensen K F. Cells on chips[J]. Nature. 2006, 442(27): 403-411.
    [23]高健,殷学锋,方肇伦.微流控芯片系统在单细胞研究中的应用[J].化学进展. 2004, 16(6): 975-983.
    [24] Pan Y J, Lin J J, Luo W J, Yang R J, Sample ?ow switching techniques on micro?uidic chips[J]. Biosensors and Bioelectronics. 2006, 21(8): 1644-1648.
    [25] Carlo D D, Lee L P. dynamic single cell analysis for quantitative biology[J]. Analytical Chemistry. 2006, 78(23): 7918-7925.
    [26] Yi C Q, Li C W, Ji S L, Yang M S. Micro?uidics technology for manipulation and analysis of biological cells[J]. Analytica Chimica Acta. 2006, 560(1-2): 1-23.
    [27] Huang W H, Ai F, Wang Z Li, Cheng J K. Recent advances in single-cell analysis using capillary electrophoresis and micro?uidic devices[J]. The Journal of Chromatography B. 2008, 866(1-2): 104-122.
    [28] Chao T C, Ros A . Microfluidic single-cell analysis of intracellular compounds[J]. Journal of the Royal Society Interface. 2008, 5(2): 139-150.
    [29] Wheeler A R, Throndset W R, Whelan R J, Leach A M, Zare R N, Liao Y H, Farrell K, etc., Microfluidic device for single-cell analysis[J]. Analytical Chemistry. 2003, 75(14): 3581-3586.
    [30] Kobel S, Valero A, Latt J, Renaudb P, Lutolf M, Optimization of micro?uidic single cell trapping for long-term on-chip culture[J]. Lab on a Chip. 2010, 10(7): 857-863.
    [31] McClain M A, Culbertson C T, Jacobson S C, Allbritton N L, Sims C E, and Ramsey J M, Microfluidic devices for the high-throughput chemical analysis of cells[J]. Analytical Chemistry. 2003, 75(21): 5646-5655.
    [32]高健,殷学锋,方肇伦,夏方诠.微流控芯片单细胞进样和溶膜[J].高等学校化学学报. 2003, 24(9): 1582-1584.
    [33] Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip[J]. Lab on a Chip. 2004, 4(1): 47-52.
    [34] Chen P, Feng X J, Sun J, Wang Y, Du W, Liu B F. Hydrodynamic gating for sample introduction on a micro?uidic chip[J]. Lab on a Chip. 2010, 10(11): 1472-1475.
    [35]王洪祚,刘世勇.酶和细胞的固定化[J].化学通报. 1997, 60(2): 22-27.
    [36] Braschler T, Johann R, Heule M, Metref L, Renaud P, Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation[J]. Lab on a Chip. 2005, 5(5): 553-559.
    [37] Voldman J, Toner M, Gray M L, Schmidt M A. A dielectrophoresis-based array cytometer[J]. Transducers. 2001, 1(3): 322-325.
    [38] Mittal N, Rosenthal A, Voldman J. nDEP microwells for single-cell patterning in physiological media[J]. Lab on a Chip. 2007, 7(9): 1146-1153.
    [39] Park H, Kim D, Yun K S. Single-cell manipulation on micro?uidic chip by dielectrophoretic actuation and impedance detection[J]. Sensors and Actuators B. 2010, 150(1): 167-173.
    [40] Gac S L, van den B A. Single cells as experimentation units in lab-on-a-chip devices[J]. Trends in Biotechnology. 2009, 28(2): 55-62.
    [41] Wakamoto Y, Umehara S, Matsamura K, Inoue I, Yasuda K. Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers[J]. Sensors and Actuators B. 2003, 96(3): 693-700.
    [42] Munce N R, Li J Z, Herman P R, Lilge L. Microfabricated Ssystem for parallel single-cell capillary electrophoresis[J]. Analytical Chemistry. 2004, 76(17): 4983-4989.
    [43] He M, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets[J]. Analytical Chemistry. 2005, 77(6): 1539-1544.
    [44] Brouzes E, Medkova M, Savenelli N, Marran D, etc. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proceedings of the National Academy of Sciences.2009, 106(34): 14195-14200.
    [45] Wu H K, Wheeler A, Zare R N, Chemical cytometry on a picoliter-scale integrated microfluidic chip[J]. Proceedings of the National Academy of Sciences. 2004, 101(35): 12809-12813.
    [46] Huang B, Wu H K, Bhaya D, Grossman A, Granier S, Kobilka B K, Zare R N. Counting low–copy number proteins in a single cell[J]. Science. 2007, 315 (81):81-84.
    [47] Yasukawa Q, Nagamine K, Horiguchi Yo, Shiku H, Koide M, Itayama T, Shiraishi F, Matsue T. Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a micro?uidic device[J]. Analytical Chemistry. 2008, 80(10): 3722-3727.
    [48] Mellors J S, Jorabchi K, Smith L M, Ramsey J M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry[J]. Analytical Chemistry. 2010, 82 (3):967-973.
    [49] Wang H Y, Lu C. Electroporation of mammalian cells in a microfluidic channel with geometric variation[J]. Analytical Chemistry. 2006, 78(14): 5158-5164.
    [50] Ocvirk G, Salimi-Moosavi H, Szarka R J, Arriaga E A, Andersson P E, Smith R, Dovichi N J, Harrison D J, Roche D, Mannheim G.β-galactosidase assays of single-cell lysates on a microchip: a complementary method for enzymatic analysis of single cells[J]. Proceedings of the IEEE. 2004, 92(1): 115-125.
    [51] Shi B, Huang W, Cheng J. Determination of neurotransmitters in PC 12 cellsby microchip electrophoresis with fluorescence detection[J]. Electrophoresis. 2007, 28(10): 1595-1600.
    [52] Xia F Q, Jin W R, Yin X F, Fang Z L. Single-cell analysis by electrochemical detection with a micro?uidic device[J]. The Journal of Chromatography A. 2005, 1063(1-2): 227-233.
    [53] Wang H Y, Lu C, Microfluidic chemical cytometry based on modulation of local field strength[J]. Chemical Communications. 2006, 42(33): 3528-3530.
    [54] Hellmich W, Pelargus C, Leffhalm K, Ros A, Anselmetti D. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology[J]. Electrophoresis. 2005, 26(19): 3689-3696.
    [55] Carlo D D, Lee L P. On-chip cell lysis by local hydroxide generation [J]. Lab on a Chip. 2005, 5(2): 171-178.
    [56] Sun Y, Yin X F, Novel multi-depth micro?uidic chip for single cell analysis[J]. The Journal of Chromatography A. 2006, 1117(2): 228-233.
    [57] Xu C X, Yin X F. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on micro?udic chips with hydrodynamic focusing[J]. The Journal ofChromatography A. 2011, 1218(6): 726-732.
    [58] Huang W H, Cheng W, Zhang Z, Pang D W, Wang Z L, Cheng J K, Cui D F. Transport, location, and quantal release monitoring of single cells on a microfluidic device[J]. Analytical Chemistry. 2004, 76(2): 483-488.
    [59] Zhao S L, Li X T, Liu Y M. Integrated micro?uidic system with chemiluminescence detection for single cell analysis after intracellular labeling[J]. Analytical Chemistry. 2009, 81 (10):3873-3878.
    [60] Zhao S L, Huang Y, Shi M, Liu R J, Liu Y M. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis[J]. Analytical Chemistry. 2010, 82(5), 2036-2041.
    [61] Gao N, Li L, Shi Z K, Zhang X L, Jin W R. High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel[J]. Electrophoresis. 2007, 28(21): 3966-3975.
    [62] Wang J, Fei B, Geahlen R L, Lu C. Quantitative analysis of protein translocations by micro?uidic total internal re?ection ?uorescence ?ow cytometry[J]. Lab on a Chip. 2010, 10(20): 2673-2679.
    [63]程介克,黄卫华,王宗礼.单细胞分析的研究.色谱. 2007, 25(1): 1-10.
    [64] Li X J, Paul C. H. Microfluidic Selection and Retention of a Single Cardiac Myocyte, On-Chip Dye Loading, Cell Contraction by Chemical Stimulation, and Quantitative Fluorescent Analysis of Intracellular Calcium[J]. Analytical Chemistry. 2005, 77(14): 4315-4322.
    [65] Sun Y.; Yin, X. F.; Ling, Y. Y.; Fang, Z. L. etermination of reactive oxygen species in single human erythrocytes using micro?uidic chip electrophoresis[J]. Analytical and Bioanalytical Chemistry. 2005, 382(7): 1472-1476.
    [66] Ling Y Y, Yin X F, Fang Z L. Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis[J]. Electrophoresis. 2005, 26(24): 4759-4766.
    [67]凌云扬,殷学锋,方肇伦.微流控芯片NDA在线衍生测定单细胞中谷胱甘肽[J].高等学校化学学报. 2005, 26(2): 247-249.
    [68]王文雷,金文睿.微流控芯片电泳/电化学检测人单个肝癌细胞中的谷胱甘肽[J].色谱. 2007, 25(6): 799-803.
    [69] Zhu L L, Lu M, Yin X F. Ultrasensitive determination of intracellular superoxide in individual HepG2 cells by micro?uidic chip electrophoresis[J]. Talanta. 2008, 75 (5): 1227-1233.
    [70] Zhao S L, Huang Y, Liu Y M. Microchip electrophoresis with chemiluminescence detection for assaying ascorbic acid and amino acids in single cells[J]. The Journal of Chromatography A. 2009, 1216 (39): 6746-6751.
    [71] Ye F Q, Huang Y, Xu Q, Shi M, Zhao S L. Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection[J]. Electrophoresis. 2010, 31(10): 1630-1636.
    [72] Zhao S L, Yong H, Ye F G, Shi M, Liu Y M. Determination of intracellular sulphydryl compounds by microchip electrophoresis with selective chemiluminescence detection[J]. The Journal of Chromatography A. 2010, 1217(36): 5732-5736.
    [73] Wang J, Bao N, Paris L L, Wang H Yu, Geahlen R L, Lu C. Detection of kinase translocation using microfluidic electroporative flow cytometry[J]. Analytical Chemistry. 2008, 80(4): 1087-1093.
    [74] Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species[J]. Analytical and Bioanalytical Chemistry. 2006, 386(3): 532-543.
    [75] Wood Z A, Poole L B, Karplus P A. Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signalin[J]g. Science. 2003, 300(5619): 650-653.
    [76] Rhee S G. Cell signaling. H_2O_2, a necessary evil for cell signaling[J]. Science. 2006, 312(5782):1882-1883.
    [77] Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress[J]. Nature reviews drug discovery. 2004, 3: 205-214.
    [78] Shah A M, Channon K M. Free radicals and redox signalling in cardiovascular disease[J].Heart. 2004, 90(5): 486-487.
    [79] Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Archives of Biochemistry and Biophysics. 2003, 417(1): 3-11.
    [80] Mao L, Osbome P G, Yamamoto K, Kato T. Continuous on-line measurement of cerebral hydrogen peroxide using enzyme-modified ring-disk plastic carbon film electrode[J]. Analytical Chemistry. 2002, 74(15): 3684-3689.
    [81] Noronha-Dutra A A, Epperlein M M, Woolf N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing[J]. FEBS letters. 1993, 321(1): 59-62.
    [1] Svahn H A, van den Berg A. Single cells or large populations? [J] Lab on a Chip. 2007, 7(5): 544–546.
    [2] El-Ali J, Sorger P K, Jensen K F. Cells on chips[J]. Nature. 2006, 442(7): 403–411.
    [3] Wood Z A, Poole L B, Karplus P A, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J]. Science. 2003, 300(5619): 650–653.
    [4] Rhee S G. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J]. Science. 2006, 312(5619): 1882–1883.
    [5] Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress[J]. Nature reviews drug discovery. 2004, 3(3): 205–214.
    [6] Shah A M, Channon K M. Free radicals and redox signalling in cardiovascular disease[J].Heart. 2004, 90(5): 486–487.
    [7] Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Archives of Biochemistry and Biophysics. 2003, 417(1): 3–11.
    [8] Mao L, Osbome P G, Yamamoto K, Kato T. Continuous on-line measurement of cerebral hydrogen peroxide using enzyme-modified ring-disk plastic carbon film electrode[J]. Analytical Chemistry. 2002, 74(15): 3684–3689.
    [9] Miller E W, Tulyathan O, Isacoff E Y, Chang C J. Molecular imaging of hydrogen peroxide produced for cell signaling[J]. Nature Chemical Biology. 2007, 3(5): 263–267.
    [10] Cossarizza A, Ferraresi R, Troiano L, Roat E, Gibellini L, et al. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry[J]. Nature Protocols. 2009, 4 (12):1790-1797.
    [11] Szücs S, Vámosi G, Póka R, Sárváry A, Bárdos H, Balázs M, Kappelmayer J, Tóth L, Sz?ll?si J,ádány R. Single-cell measurement of superoxide anion and hydrogen peroxide production by human neutrophils with digital imaging fluorescence microscopy[J]. Cytometry. 1998, 33(1): 19–31.
    [12] Belousov V V, Fradkov A F, Lukyanov K A, Staroverov D B, Shakhbazov K S, Terskikh A V, Lukyanov S. Genetically encoded ?uorescent indicator for intracellular hydrogen peroxide[J]. Nature Methods. 2006, 3(4): 281–286.
    [13] Luo Y P, Liu H Q, Rui Q, Tian Y. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film[J]. Analytical Chemistry. 2009, 81(7): 3035–3041.
    [14] Liu T J, Lin B C, Qin J H. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device[J]. Lab on a Chip. 2010, 10(13): 1671–1677.
    [15] McClain M A, Culbertson C T, Jacobson S C, Allbritton N L, Sims C E, Ramsey J Michael. Microfluidic devices for the high-throughput chemical analysis of cells[J]. Analytical Chemistry. 2003, 75(21): 5646-5655.
    [16] Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goks?r M, Hohmann S, Nystr?m T, Hanstorp D. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes[J]. Lab on a Chip. 2007, 7(1): 71–76.
    [17] Gabriele S, Versaevel M, Preira P, Théodoly O. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays[J]. Lab on a Chip. 2010, 10(11): 1459–1467.
    [18] Huang W H, Ai F, Wang Z L, Cheng J K. Recent advances in single-cell analysis using capillary electrophoresis and micro?uidic devices[J]. The Journal of Chromatography B. 2008, 866(1-2): 104–122.
    [19] Roman G T, Chen Y L, Viberg P, Culbertson A H, Culbertson C T. Single-cell manipulation and analysis using microfluidic devices[J]. Analytical and Bioanalytical Chemistry. 2007, 387(1): 9–12.
    [20] Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip[J]. Lab on a Chip. 2004, 4(1): 47–52.
    [21] Zhao S L, Li X T, Liu Y M. Integrated Micro?uidic System with Chemiluminescence Detection for Single Cell Analysis after Intracellular Labeling[J]. Analytical Chemistry. 2009, 81(10): 3873–3878.
    [22] Hellmich W, Pelargus C, Leffhalm K, Ros A, Anselmetti D. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology[J]. Electrophoresis. 2005, 26(19): 3689–3696.
    [23] Huang B, Wu H K, Bhaya D, Grossman A, Granier S, Kobilka B K, Zare R N. Counting low–copy number proteins in a single cell[J]. Science. 2007, 315(81): 81–84.
    [24] Toriello N M, Douglas E S, Thaitrong N, Hsiao S C, Francis M B, Bertozzi C R, Mathies R A. Integrated microfluidic bioprocessor for single-cell gene expression analysis[J]. Proceedings of the National Academy of Sciences. 2008, 105(51): 20173–20178.
    [25] Mellors J S, Jorabchi K, Smith L M, Ramsey J. M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry[J]. Analytical Chemistry. 2010, 82(3): 967–973.
    [26] Yi C Q, Li C W, Ji S L, Yang M S. Micro?uidics technology for manipulation and analysis of biological cells[J]. Analytica Chimica Acta. 2006, 560(1-2): 1–23.
    [27] Jacobson S C, Koutny L B, Hergenr?der R, Moore A W, Ramsey J M. Microchip capillary electrophoresis with an integrated postcolumn reactor[J]. Analytical Chemistry. 1994, 66(20): 3472-3476.
    [28] Chen P, Feng X J, Sun J, Wang Y, Du W, Liu B F. Hydrodynamic gating for sample introduction on a micro?uidic chip[J]. Lab on a Chip. 2010, 10(11):1472–1475.
    [29] Wang H Y, Lu C. Electroporation of Mammalian Cells in a Microfluidic Channel with Geometric Variation[J]. Analytical Chemistry. 2006, 78(14): 5158-5164.
    [30] Xu K H, Liu F, Wang H X, Wang S S, Wang L L, Tang B. Sulfonate-based fluorescent probes for imaging hydrogen peroxide in living cells[J]. Science in China (Series B:Chemistry). 2009, 52 (6): 734-740.
    [31] Li H M, Li Q L, Wang X, Xu K H, Chen Z Z, Gong X. C. X. Liu, L. L. Tong and B. Tang, Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection[J]. Analytical Chemistry. 2009, 81(6): 2193–2198.
    [32] Gong X C, Li Q L, Xu K H, Liu X, Li H M, Chen Z Z, Tong L L, Tang B. A new route for simple and rapid determination of hydrogen peroxide in RAW264.7 macrophages by microchip electrophoresis[J]. Electrophoresis. 2009, 30(11): 1983–1990.
    [33] Li Q L, Zhang H, Wang Y, Tang B, Liu X, Gong X C. Versatile programmable eight-path-electrode power supply for automatic manipulating micro?uids of a micro?uidic chip[J]. Sensors and Actuators B. 2009, 136(1-2): 265–274.
    [34] Bai J X, Rodriguez A M, Melendez J A, Cederbaum A I. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 Cells against oxidative injury[J]. The Journal of Biological Chemistry. 1999, 274(37): 26217–26224.
    [35] Chen Z Z, Li Q L, Wang X, Wang Z Y, Zhang R R, Yin M, Yin L L, Xu K, Tang B. Potent method for the simultaneous determination of glutathione and hydrogen peroxide in mitochondrial compartments of apoptotic cells with microchip electrophoresis-laser induced fluorescence[J]. Analytical Chemistry. 2010, 82(5): 2006–2012.
    [36] Jin W R, Li X J, Gao N. Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle-Au/Hg dual electrode[J]. Analytical Chemistry. 2003, 75(15): 3859–3864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700