用户名: 密码: 验证码:
自升式平台动力响应及疲劳分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自升式平台是海上石油开发的主要工程结构之一。其自身柔性较大,自振周期较长,易与波浪中低频部分发生共振,同时在波浪作用下会产生较大的动力放大效应。因此对平台进行动力分析就显得非常重要。
     平台在海洋环境中会受到波浪的循环作用,在平台结构上会产生循环变化的交变应力。虽然应力水平低于材料的屈服强度,但是在长期的交变应力的作用下,平台有可能产生突然性的疲劳破坏。因此对平台进行疲劳分析也有着重要的意义。
     本论文采用ANSYS有限元软件进行模拟分析。对不同状态下的平台进行模态分析,求出平台在不同状态下的固有频率,并与波浪频率进行比较,判断平台与波浪发生共振的可能性。在模态分析的基础上,采用模态叠加法对平台的较完善有限元模型进行瞬态动力分析,解决了大型模型难以应用动力分析的难题。
     本论文还应用“设计波”法和“谱分析”法对平台的部分关键构件进行了疲劳分析,并详细对比了两种方法的计算结果,分析计算结果产生差异的原因,对如何选择疲劳分析方法提出了建议。
Jack-up is one of the major engineering structures in offshore oil development. Because of its large flexibleness and long natural cycles, it is easily resonant with low frequency wave. Meanwhile, waves will give a greater dynamic magnification effect on platform. So the dynamic analysis on jack-up is very important.
     Platforms in marine environment will be affected by the cycled waves, and alternating stresses will appear on the platform structure. Although the stress level is below the yield strength, long-term exposure to the alternating stresses may make the platform suffer the suddenly fatigue damage. So it has important significance to apply fatigue analysis to the jack-up platform.
     In this paper, we will use ANSYS for simulation analysis. We will do Modal Analysis on platform under different conditions, calculate the platform’s natural frequencies under different conditions, compare them with wave frequencies, and estimate the possibility of the platform to resonate with waves. After Modal Analysis, we will apply transient dynamic analysis using modal superposition method on better platform finite element model, and we have solved the problem to apply dynamic analysis on large finite element model.
     In this paper, we also use the“design-wave”method and“spectrum”method to apply fatigue analysis on key components of the platform. Then we compare the calculation results from the two methods, analyze the causes for the differences, and give an advice for how to choose fatigue analysis methods.
引文
[1]任贵永主编.海洋活动式平台.天津.天津大学出版社
    [2] Bent Berge, and Joseph Penzien. Three-Dimensional stochastic response of offshore towers to wave forces[A]. Proceeding of 6th annual offshore technology conference[C]. OTC 2050,1974.173-190.
    [3] Ove Arup, Partners, DAFF-dynamic analysis using fourier transforms for soil-structures systems onshore and offore, Interim Report to U.K. Department of Energy,1976
    [4] Borgman, L.E.(1976). Spectral analysis of ocean wave forces on piling, J. water ways, Harbors&Coastal Eng. Div. ASCE, 93,129-156
    [5] Malhorta, A.K. and Penzien, J.“Non-Determinisic Analysis of Offshore Structures,”ASCE J.Engng. Mechanics Div.(October 1970),2155-2173
    [6] Malhorta, A.K. and Penzien, J.“Non-Deterministic Analysis of Offshore Structures,”ASCE J.Engng, Mechanics Div.(December 1970),985-1003
    [7] Berge,B. And Penzien, J.“Three-Dimensional Stochastic Response of Offshore Towers to Wave Forces,”OTC2050(May 1974),173-190
    [8] Dunwoody, A.B. and Vandiver, J.K.“The Influence of Separated Flow Drag on the Dynamic Response of offshore Structures to Random Waves,”latl. Symp. Hydrodynamics in ocean Engineering, Norwegian lnst, Tech.(1981),263-287
    [9] Harem, A. Hsih ,C .C. and Tognarelli, M.A.“Frequency-Domain Analysis of offshore Platform in Non-Gaussian Seas,”J. Engng. Mechanics(June 1998),668-683
    [10] Hsien Hua Lee and Ruey-Ji. Vibration Mitigation of Structures in the Marine Environment[J]. Ocean Engineer. 1996, 23: 741-759
    [11]杨昇田.导管架海洋平台自振特性的简化计算方法.海洋工程. 1994, 12(1):1-8
    [12]黄怀州.导管架平台结构动力特性与动力可靠性分析.大连理工大学硕士学位论文.2004.3
    [13]陆浩华.自升式海洋平台结构动力响应分析.武汉理工大学硕士学位论文.2005.3
    [14]周焕廷.钢质海洋平台在随机荷载作用下动力响应分析的复模态法.青岛建筑工程学院.硕士学位论文.2003.3
    [15]李茜.杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析.中国海洋平台.2003.8 41-46
    [16] Maddox, N.Roger. Fatigue analysis for deepwater fixed-bottom platforms[A]. Proceeding of 6th annual offshore technology conference[C]. OTC 2051, 1974. 191-203.
    [17] Maddox, N.Roger, and Wildenstein Annie. W. A spectral fatigue analysis for offshore structures[A]. Proceeding of 7th annual offshore technology conference[C]. OTC 2261, 1975. 185-198.
    [18] Vughts, J. H., and Kinra R. K. Probabilistic fatigue analysis of fixed offshore structures[A]. Proceeding of 8th annual offshore technology conference[C]. OTC 2608, 1976. 889-906.
    [19] Haldar A., and Kanegaonkar H.B. Stochastic fatigue response of jackets under intermittent wave loading[A]. Proceeding of 18th annual offshore technology conference[C].OTC 5332,1986.377-385
    [20] Haldar A., and Kanegaonkar H.B. Non-Gaussian response of offshore platforms: Dynamic[J]. Journal of Structural Engineering, ASCE, Vol.113, No.9, Sep,1987.1882-1898
    [21] Haldar A., and Kanegaonkar H.B. Non-Gaussian response of offshore platforms: Fatigue[J].Journal of Structural Engineering, ASCE, Vol.113, No.9, Sep., 1987. 1899-1908.
    [22] Gupta, A., and Singh, R. P. Fatigue Behaviour of Offshore Structures[M]. Springer Verlag Berlin, Heidelberg. 1986.
    [23]张立.海洋导管架平台结构疲劳可靠性研究.浙江大学博士后学位论文.2001.2
    [24]孙玉武.聂武.自升式海洋平台后服役期的疲劳强度及寿命分析.哈尔滨工程大学学报. 2001.4 22(2). 10-14
    [25]沈恺.海洋自升式平台结构安全评估及寿命预报.上海交通大学硕士学位论文.2002.1
    [26]匡卫红.结构载荷谱下的疲劳寿命可靠性分析.上海交通大学硕士学位论文.2003.2
    [27]张未.船体结构疲劳分析有限元方法初步研究.上海交通大学硕士学位论文.2003.2
    [28]刘杰明.单点系泊导管架疲劳分析.中国海上油气(工程).2003.6 22-24
    [29]高震.胡志强.顾永宁等.浮式生产储油轮船艏结构疲劳分析.海洋工程. 2003.5 21(2).8-15
    [30]王琮.海洋工程结构物局部结构疲劳行为基础研究.大连理工大学硕士学位论文.2004.3
    [31]张磊.李润培.南海2号半潜式钻井平台疲劳寿命分析.2004.10 426-432
    [32]李明.陶正梁.姚海田.基于ANSYS的平台波流载荷下动力分析及疲劳分析.石油钻探技术.2005.5 45-48
    [33]郭斌.唐文勇.张圣坤.Truss SPAR平台桁架的疲劳分析方法.中国海洋平台.2006.8 36-41
    [34]钱进.导管架平台疲劳可靠性分析.河海大学硕士学位论文.2006.4
    [35]张剑波.半潜式钻井船典型节点疲劳可靠性分析.船舶工程.2006.1 36-40
    [36]竺艳蓉编著.海洋工程波浪力学.天津.天津大学出版社
    [37]张淑茳.史冬岩主编.海洋工程结构的疲劳与断裂.哈尔滨.哈尔滨工程大学出版社.2005
    [38]徐继祖.李维扬.汪克让等编著.海洋工程结构动力分析.天津.天津大学出版社.1992
    [39]郑学祥主编.船舶及海洋工程结构的断裂与疲劳分析.北京.海洋出版社.1988
    [40]尚晓江.邱峰.赵海峰等编著.ANSYS结构有限元高级分析方法与范例应用.北京.中国水利水电出版社.2005
    [41] James F. Wilson编著.杨国金.郭毅.唐钦满等翻译.海洋结构动力学.北京.石油工业出版社.1991
    [42]程育仁.缪龙秀.侯炳麟编著.疲劳强度.北京.中国铁道出版社.1990
    [43]中国船级社.海上移动平台入级与建造规范.北京.人民交通出版社.1993
    [44] Ben, G Burke, and James T. Tighe. A times series model for dynamics behavior of offshore structures[A]. Proceeding of third annual offshore technology conference[C]. OTC 1403,1971. 775-788.
    [45] Bent Berge, and Joseph Penzien. Three-Dimensional stochastic response of offshore towers to wave forces[A]. Proceeding of 6th annual offshore technology conference[C]. OTC 2050,1974.173-190.
    [46] Wirsching, P.H., Stahl, B, and Nolte, K.G., Probabilistic fatigue design for ocean structures[J]. Journal of the Structural Division, ASCE, Vol. 103. No. ST10, Oct, 1977. 2049-2062
    [47] Wirsching, P.H., Stahl, B, and Nolte, K.G., Probabilistic fatigue design forocean structures[J]. Journal of the Structural Dibision, ASCE, Vol. 103. No. ST10, Oct, 1977.2049-2062
    [48] Wirsching, P.H. Probaility based fatigue design in welded joints of offshore structures[A]. Proceeding of 11th annual offshore technology conference[C]. OTC 3380,1979.197-206
    [49] Martindale, S.G., and Wirsching, P.H. Reliability-based progressive fatigue collapse[J]. Journal of Structural Engineering, ASCE, Vol.109.No.8, Aug,1983.1792-1811.
    [50] Wirsching, P.H. Fatigue reliability for offshore structures[J]. Journal of Structural Engineering, ASCE, Vol.110.No.10,Oct,1984.2340-2355.
    [51] Engesvik, K.M., and Moan Torgeir. Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints[J]. Journal of Engineering Fracture Mechnics Vol.18, No.4, 1983.743-762
    [52]龚顺风.海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究.南开大学博士学位论文.2003.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700