用户名: 密码: 验证码:
细粒尾矿高堆坝抗震液化稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝是堆积金属及非金属等选矿废弃物的构筑物,也是矿山里的重大危险源之一。尤其对于高地震烈度地区的细粒尾矿高堆坝,一旦发生溃坝的事故,将给尾矿坝下游人民的生命财产造成巨大损失,对环境安全构成严重的威胁。本论文通过理论分析、现场测试、室内试验、数值分析和现场工程实践相结合的方法,对细粒尾矿高堆坝抗震液化稳定性进行了较为系统的研究。所完成的主要工作和得出的结论如下:
     (1)分析了国内外细粒尾矿筑坝和高堆坝抗震液化稳定性研究现状,提出了系统研究细粒尾矿高堆坝抗震液化稳定性分析的迫切性。针对尾矿进行颗粒组成分析,物理力学性质分析及动力特性分析。通过对不均匀系数和曲率系数的计算分析,得出该细粒尾矿趋于级配良好的土;浅层的尾粉砂、尾粉土粘粒含量均小于13%,8度地震时具有液化可能,需更进一步的抗震液化分析。
     (2)利用Geo-Studio岩土软件建立不同筑坝高度的概化模型,通过拟静力法计算分析不同筑坝高度的稳定性安全系数,初步确定该细粒尾矿坝可堆筑至115m。
     (3)为近一步论证坝体的抗震液化稳定性,建立尾矿坝动力响应分析的概化模型,利用人工合成的地震波对其进行动力响应分析。对坝体不同部位的地震反应加速度、位移的不同及随时间的变化进行分析,对比地震前后空隙水压力的变化,得出与我国上游法尾矿坝实际地震观测到的情况相符的结论。
     (4)结合常规的现场液化判别和剪应力对比法得出8度地震作用下坝体浅层尾矿砂易于液化,液化区主要集中在库内水面线以下和下游坝坡坡脚处。地震作用下尾矿坝洪水位运行情况下坝体浸润线更高,使得下游坡脚处的尾砂更容易发生液化,范围也更大,下游坝坡可能发生较大规模的浅层滑动,影响坝体的整体稳定性。
     (5)结合抗震液化稳定性分析结果和工程实际情况,为提高细粒尾矿高堆坝的抗震液化稳定性提出应对措施。坝坡可采用大口辐射井措施进行排渗,降低坝坡地下水位,以杜绝尾矿砂的液化根源;库内可采用排水井,隧洞等形式进行排洪,防治超洪水位运行;可采取贴坡反滤排水,提高坝体抗震能力等等。
Tailings dam is a heap of metal and non-metallic structures such as mineral processing wastes and also one of the major hazards in mines. Especially for areas of high seismic intensity high fine tailings stacked dam, in the event of dam-break accident, will give the people downstream of tailings dam caused huge losses of life and property, the environment pose a serious threat. This paper, through theoretical analysis, field testing, laboratory test, numerical analysis and field method of combining engineering practice, in seismic liquefaction stability of the fine tailings dam high heap a more systematic study. The main works done and the conclusions obtained are as follows:
     (1) Analysis of fine-grained tailings dams at home and abroad, and high stability of the heap status of dam seismic liquefaction. This paper made a systematic study of fine tailings dam of high seismic liquefaction reactor stability analysis of urgency. Tailings conducted for the analysis of particle composition, physical and mechanical properties analysis and dynamic properties analysis. Through the calculation and analysis of Uniformity coefficient and curvature coefficient, the fine tailings tend to draw level with a good soil. The clay of Shallow mealy sand and tail silt content less than 13%, which may be liquefied, in the case of 8-degree earthquake, so seismic liquefaction need further analysis.
     (2) Using the geotechnical software Geo-Studio create different conceptual model for dam height, Calculated by pseudo-static method analysis of different high degree of stability safety factor of Dams, Preliminarily determined that the fine-grained tailings dam can be stacked to 115m.
     (3) Established dynamic response conceptual model of tailings dam for taking a step forward arguments for the stability of the dam's stability of anti-liquefaction. Use of synthetic seismic wave analysis of its dynamic response, and analyze different parts of the seismic response of dam acceleration, displacement and which changes over time in different. Compared the changes of void water pressure between before and after the earthquake, and draw it match with our tailing dam constructed with upstream method Observed in the case of actual earthquake.
     (4) Combined with conventional liquefaction estimation and shear stress contrast method to get the shallow tailings dam liquefaction easy under 8 degrees of earthquake. Liquefied area mainly concentrated in the bank below the water surface and the downstream slope toe. Tailings dam under flood water to run a higher saturation line, Made at the downstream toe of the tailings is more prone to liquefaction, the range is greater, large-scale downstream slope of the shallow slide may occur, affecting the overall stability of the dam.
     (5) Combined with the results of anti-liquefaction stability analysis and practical engineering, dam slope can use the drainage measures of Large-diameter radial well, reduce the slope water table, to eliminate causes of liquefied tailings; Drainage wells, tunnels and other forms can be used for inside the part of the tailings drainage, flood prevention and control over operations; You can also take sticking slope antilittering drainage, Improve the anti-liquefaction capacity of the dam, and so on.
引文
AQ2006-2005,尾矿库安全技术规程[S],2005年
    Brawner C. Design construction and repair of tailings dams for metal mines waste disposal[J]. Current Geotechnical Practice in Mine Waste Disposal, ASCE, 1979.
    DL5073-2000,水工建筑物抗震设计规范[S],2000年
    GB 50021-2001,岩土工程勘察规范[S]
    GB50011-2001,建筑抗震设计规范[S]
    HM Idriss, LM, Beikae, M. User's Manual for QUAD4M A. Computer Program To Evaluate The Seismic Response of Soil Structures Using Finite Element Procedures and Incorporating a Compliant Base[J]. Department of Civil & Environmental Engineering, University of California Davis,1994:2341-2352
    I. Mascaro Mine wastes at the polymetallic deposit of Fenice Capanne (southern Tuscany, Italy). Mineralogy, geochemistry, and environmental impact[J] Environmental Geology, 2001,41 (4):417~429
    Idriss, LM, Sun J. User's 1vlanual for SHAKE9IA Computer Program For Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits[J].Department of Civil & Environmental Engineering, University of California Davis,1992
    K. Mohd .Azizli, Kyoung-Woong Kim. Characteristics of tailings from the closed metal mines as potential contamination source in South Korea[J] Environmental Geology, 2001, 41(3):358~364
    K. Mohd. Azizli, Tan Chee Yau Design of the Lohan Tailings Dam, Mamut Copper Mining San. Bhd,Malaysia [J] Minerals Engineering,1995,8(8):705 712
    KU C S,LEE D H,WU J H. Evaluation of soil liquefaction in the Chi-Chi Taiwan earthquake using CPT[J].Soil Dynamics and Earthquake Engineering,2004,24(9/10):659-673.
    Naesgaard E, Byrne P M and Huizen G V·Behavior of light structures founded on soil crust founded over liquefied ground [M ]·Geotechnical EarthquakeEngineering and Soil Dynamics·1998·Washington,Vol·:l 422-433·
    Quake Modeling with Quake/W 2007,An Engineering Methodology, GEO-SLOPE Int .Ltd.
    SDJ10-78,水工建筑物抗震设计规范[S],1981年
    SEED H B,IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1971,97(SM9):1 249-1 273.
    SEED R B,CETIN K O,MOSS R E S,et al. Recent advances in soil liquefaction engineering,a unified and consistent framework[R].EERC,USA:Earthquake Engineering Research Center,2003.
    Towhata L, SasakiY, Tokida K L et al·Prediction of Perma-nent Displacement of Liquefied Ground by Means of Minimum Energy Principle[J]·Soils and Foundations, 1992, 32(3): 97-116·
    Volpe R. Physical and engineering practices of copper tailings [J].Current Geotechnical Practice in Mine Waste Disposal, ASCE, 1979.
    ZBJ1-90,选矿厂尾矿设施设计规范[S],1990年,
    安君.尾矿坝地震稳定性分析方法及其应用的研究[D],北京工业大学,2007.5
    陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验结果与分析[J].水利学报,2006年5月.
    陈守义.尾矿坝细粒泥层内超静孔隙水压力的近似估算方法[J]岩土力学,1991,12(1):45~55
    陈守义.浅议上游法细粒尾矿堆积坝问题[J]岩土力学,1995,16(3):70~76
    陈仲颐、周景星、王洪瑾,土力学[M]北京:清华大学出版社,1994,267-269
    高建生,李万升,王治平.中国尾矿坝地震安全度(14)一利用共振柱对尾矿砂的测试及分析工业建筑[J] ,1995 (7) :48~5 0.
    高开绪,胡冰,王树荣,土石坝地震动力及液化有限元分析的工程应用[J],山东水利2009.8,17-19
    工程地质地质手册编委会,工程地质地质手册(第四版).中国建筑工业出版社,2007年2月
    顾淦臣、沈长松、岑威钧,土石坝地震工程学[M],北京:中国水利水电出版社,2009.12
    顾晓鲁,钱鸿缙,刘惠珊,汪时敏,地基与基础[M],中国建筑工业出版社,第2版1993年12月
    郭振世.高堆尾矿坝稳定性分析及加固关键技术研究:[博士学位论文].西安:西安理工大学,2010
    候传东、徐作清、候继磊,尾矿坝水平排渗井工程施工技术[J],2003,223-225
    李大东,中日尾矿坝抗震设计规范比较及相关问题研究[D],大连理工大学,2006.6,1-8
    李万升,高建平,王治平.中国尾矿坝地震安全度(8)一大石河尾矿砂的力学特性试验研究[J] .工业建筑,1995(1):43~48.
    李新星,栗西沟尾矿坝地震动力反应及液化评价研究[D],长安大学,2004.6,1-10
    李新星.栗西沟尾矿坝地震动力反应及液化评价研究[D],长安大学,2004.6,1-10
    李哲辉.某铀尾矿库黄土状粉土地基抗液化处理:[J]铀矿冶,2005,24(1):28~33
    林玉山,张卫.尾矿库地质灾害与危险性评估[J].桂林工学院学报,2006,26(4):486-490. LIN Yu-shan, ZHANG Wei. Geo hazard and risk assessment for tailing reservoir[J].Journal of Guilin University of Technology,2006,26(4):486?490.
    刘菀茹.尾矿动力特性及其堆坝稳定性分析:[硕士学位论文].成都:四川大学,2006
    刘小丽,刘红军,贾永刚.黄河三角洲饱和粉土层地震液化判别方法及液化特征研究[J].岩石力学与工程学报,2007,26(增1):2 981-2 987.(LIU Xiaoli,LIU Hongjun,JIA Yonggang. Investigation on prediction methods and characteristics of earthquake-induced liquefaction of silt soil in the Yellow River delta[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Supp.1):2 981-2 987.(in Chinese))
    刘佑荣,唐辉明.岩石力学[M].武汉:中国地质大学出版社,1999.
    卢廷浩,土力学[M].南京:河海大学出版社,2002.1
    吕西林,任红梅,李培振,地震作用下可液化土的数值模拟与试验验证[J],建筑科学与工程学报,第26卷第4期2009.12,1-6
    毛益佳.汝阳寺沟尾矿坝快速堆积可行性研究:[硕士学位论文].西安:长安大学,2009
    孟祥跃,张均锋,谈庆明,等.冲击载荷下饱和砂土中流动和破坏的X光观测[J].岩石力学与工程学报,2002,21(6):803-807.(MENG Xiangyue,ZHANG Junfeng,TAN Qingming,et al. X-rayon serration on flow and failure of saturated sand under impact loading[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(6):803-807.(in Chinese))
    阮元成,郭新.饱和尾矿料静、动强度特性的试验研究[J].水利学报,2004(1):67~73.
    沈楼燕,魏作安.探讨矿山尾矿库闭库中的一些问题:[J].金属矿山,2002,6:4748
    石兆吉等,砂土液化判别和综合方法研究,《地震工程与工程振动》[J],1997 Vol.17,No.1
    孙恒矗,砂土地震液化大变形研究进展[J],广东水利水电,2009.8第8期,12-16
    王凤江,上游法高尾矿坝的抗震问题[J],秦皇岛冶金设计院2001,33(5),10-13
    王汉强,沈楼燕,吴国高编著,《国体废物处置堆存场环境岩土技术》[M],北京:科学出版社,2007
    王汝恒,贾彬,邓安福,等.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006,25(增2):4 059-4 064.(WANG Ruheng,JIA Bin,DENG Anfu,et al. Dynamic triaxial testing study on dynamic characteristics of sandy pebble soil[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(Supp.2):4 059-4 064.(in Chinese))
    王武林,杨春和,阎金安.某铅锌矿尾矿坝工程勘查与稳定性分析[J].岩石力学与工程学报,2003,24(5):858~862.
    王余庆,王治平,辛鸿博,李志林.中国尾矿坝地震安全度(1)一大石河尾矿坝1976年唐山大地震震害及有关强震观测记录[J].工业建筑,1994(7):38~42.
    王余庆,辛鸿博,李志林.中国尾矿坝地震安全度(11)一大石河尾矿砂稳态变形特性[J] .工业建筑,1995 (4) :35~40.
    王余庆,辛鸿博.中国尾矿坝地震安全度(12)一用稳态理论评价大石河尾矿坝的液化与稳定[J] . I业建筑,1995 (5):49~52.
    王治平,高艳平,辛鸿博.中国尾矿坝地震安全度(2)一大石河尾矿坝基岩输入地震动的确定[J].工业建筑,1994(8):41~47.
    王治平,李志林.中国尾矿坝地震安全度(3)一经受唐山大地震的大石河尾矿坝历史和现状剖析[J].工业建筑,1994(9):47~50.
    尾矿设施设计参考资料编写组尾矿设施设计参考资料:[M]北京:冶金工业出版社,1980
    魏作安,尹光志,沈楼燕,等.探讨尾矿库设计领域中存在的问题:[J].有色金属(矿山部分),2002,4:4445
    魏作安.细粒尾矿及其堆坝稳定性研究:[博士学位论文].重庆:重庆大学,2004
    吴启明某尾矿坝的稳定性计算与分析[J].有色金属(矿山部分)第62卷第2期,2010.3
    吴远亮.尾矿坝的动力稳定性分析:[硕士学位论文].西安:西安理工大学,2006
    辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(13)-1976年大石河尾矿坝一维地震反应分析[J] .工业建筑,1995 (6) :49~52.
    辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(15)-1976年大石河尾矿坝二维地震反应分析[J] .工业建筑,1995 (8) :43~46.
    阎金安,王武林.尾矿砂的动力特性研究[J].岩土力学,1990(4):69~74.
    杨做亚,中线法筑堆尾矿坝动力反应分析[D].重庆大学硕士学位论文,2008年4月。
    尹志光、魏作安、许江,细粒尾矿及其堆坝稳定性分析[M]重庆:重庆大学出版社,2004
    张超,杨春.尾矿料的动力特性试验研究[J].岩土力学,2006年1月.
    张超,杨春和,孔令伟.某种铜矿尾矿砂力学特性研究和稳定性分析[J].岩土力学,2003,24(5):858~862.
    张超.尾矿动力特性及坝体稳定性分析[D].中国科学院研究生院博士学位论文,2005年5月.
    张建隆.尾矿坝的抗震设计研究.构筑物抗震[M],北京:测绘出版社,1990.
    张倬元,王士天,王兰生编著,《工程地质分析原理》[M],地质出版社,1981.12
    赵杰,李淑英.尾矿坝浸润线控制[J].西部探矿工程,2005,(2):69-70.
    《中国有色金属尾矿库概论》编辑委员会中国有色金属尾矿库概论[R]中国有色金属工业总公司,1992
    朱百里、沈珠江,计算土力学[M]上海:上海科技大学出版社,1990,307-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700