用户名: 密码: 验证码:
等规聚丙烯/醋酸丁酸纤维素酯体系形态结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多组分聚合物的性能不仅取决于化学结构,而且在很大程度上取决于材料的形态结构。而多组分聚合物形态结构及其形成机理取决于组分比、界面张力、粘弹特性、加工条件等因素。因此,研究多相多组分聚合物形态及其演化具有理论与实际价值。
     本文运用扫描电子显微镜(SEM)、小角X射线散射仪(SAXS)等手段,对等规聚丙烯/醋酸丁酸纤维素酯(iPP/CAB)体系形态结构及其分散相演化机理进行研究,建立了iPP分散相形态结构演化的模型;同时分析了材料粘度特性、温度场、加工设备、组分比等因素对iPP/CAB体系形态结构的影响。
     通过在双螺杆挤出机螺杆不同位置取样淬冷的方式观察分散相形态演化的过程,发现了两种形态演化方式。一种是长条拉伸型,即分散相液滴在共混熔融软化阶段被拉伸成细长的长条状结构,然后由于界面扰动长条状结构破裂成一系列微小颗粒,最后这些微小颗粒在挤出口附近发生凝聚并且形成了纤维。另一种是层状铺展型,即分散相液滴在共混熔融软化阶段铺展成了层状结构,之后层状结构逐渐变薄,其表面生成了大量孔洞,孔洞大到一定程度后层状结构破裂,形成大量的球状、椭球状微小颗粒和带状结构,最终在剪切流场的作用下分散相形成了纤维状结构。根据剪切场中分散相液滴形变破裂理论,对共混熔融软化阶段分散相液滴的两种形变方式进行分析,并计算了长条状结构的扰动破裂时间和椭球状结构的回缩时间。研究发现,分散相尺寸变化主要集中在共混熔融软化阶段,长条状分散相结构形成之后在很短时间内即破裂成为椭球状、哑铃状等结构,椭球状结构回缩成球状结构的时间也非常短。最后结合实验现象以及理论分析绘制了熔融共混过程中分散相形态结构演化示意图。
     研究了粘度比、加工设备、温度场和组分比对iPP/CAB体系形态结构的影响。不同粘度比条件下分散相形态演化方式不同:粘度比较大的体系为长条拉伸型,所制备分散相尺寸较大、尺寸分布较宽;粘度比较小的体系为层状铺展型,所制备分散相尺寸较小、尺寸分布较窄。加工设备的混合能力对分散相的形态尺寸有重要影响:双螺杆挤出机和微型共混挤出机对物料的剪切作用充分,所制备分散相尺寸较小,单螺杆挤出机对物料剪切作用不够充分,所制备分散相尺寸较大。在不同温度场,分散相形态尺寸不同:共混样品放置于150℃硅油时,随时间增加分散相尺寸增大,两相间距变大;而共混样品放置于140℃烘箱时,随时间增加分散相尺寸缓慢增大,两相间距基本不变。最后利用SAXS研究了组分比对共混体系形态结构的影响,发现随分散相组分比增加,其相关距离和平均弦长均不断变大,这表明分散相尺寸随组分比增大而增大。
The properties of multicomponent polymers not only depend on the chemical structure but also the morphology of system. While, the morphology of multicomponent system can be affected by the blend ratio, interface tension, viscoelasticity ratio, processing parameters and so on. So it is valuable both in theory and practical to study the phase evolution mechanisation of the multicomponent polymers.
     In this paper, the process of phase evolution of isotactic polypropylene/cellulose acetate butyrate (iPP/CAB) system was analyzed by scanning electron microscopy (SEM) and small angle X-ray scattering(SAXS), then the theory model of which was simulated. What is more, the influence of the material viscoelasticity, the temperature field, blending machine and the blend ratio on the phase development was also discussed.
     To study the process of phase evolution of iPP/CAB system, the samples were taken out at different positions of the twin-screw extruder. Two kinds of morphology evolution mechanization were found. (1) The separated phase droplet is drawn into cylinder at the initial stage of compounding, then the cylinder breaks into small particles, at last the small particles change into long fibers. (2) The separated phase is stretched into a sheet at the initial stage of compounding, then the sheet would break up into small particles, at last the small particles change into long fibers. According to the theory of droplet deformation and breakup, the process of phase development was analyzed. The time of the separated phase evolution was calculated, and the process of ellipsoid separated phase changes into sphere was also simulated. It was found that the separated phase's morphology and size changes greatly at the initial stage of compounding. At last, the sketch map of the separated phase morphology evolution was given.
     The influence of the viscoelasticity ratio, temperature field, blending machine and blend ratio on the phase development was also studied. It was found that the process of phase development was not the same for systems different in viscoelasticity ratio:for the systems with larger viscoelasticity ratio, the separated phase droplets would change into long strips at the initial stage, and the final size of separated phase is large; for the systems with small viscoelasticity ratio, the separated phase droplets would change into thin sheets at the initial stage, and the final size of separated phase is small. The blending machines have significant effects on the separated phase size:the size of separated phase made by twin screw extruder is smaller than that made by a single screw extruder and a mini extruder. The separated phase would form different morphology and have different size distribution at different temperature field:when the blends specimen was placed in a silicone oil both at 150℃, the size of separated phase would increase greatly and the distance between two phases become larger; when the blends specimen was placed in the air oven at 140℃, the size of separated phase would increase slowly and the distance between two phases would not change. At last, the influence of blend ratio on the phase morphology and size was studied by SAXS. It was found that the correlation distance and average chord lengths of separated phase would increase with the increasing of blend ratio, which means the size of separated phase would increase with the increasing of blend ratio.
引文
1. Scott C E, Macosko C W. Morphology Development During the Initial Stages of Polymer-Polymer Blending. Polymer,1995,36,461
    2. Sundaraj U, Macosko C W, Rolando R J, et al. Morphology Development in Polymer Blends. Poly. Eng. Sci.,1992,32,1814
    3. Yin B, Zhao Y, Morphology Development of PC/PE Blends During Compounding in a Twin-screw Extruder, Poly. Eng. and Sci.,2007,47,14
    4. Li H P, Sundararaj U, Morphology Development of Polymer Blends in Extruder: The Effects of Compatibilization and Rotation Rate, Macro. Chem. Phys., 2009,210,852
    5. Li Y Y, Yan D, Ma G Q, Sheng J, Application of Mie Light Scattering to the Morphological Development of Polypropylene/polystyrene Blends. Ⅰ. Method for the Determination of Mie Scattering, J. Appl. Poly. Sci.,2010,116,1933
    6.陈云,盛京,沈宁祥,小角光散射在线系统研究多相聚合物双螺杆挤出过程中的相尺寸—非相容PE/PA1010体系,高分子学报,2003,2,282
    7.张爽男,蔡志江,盛京,聚苯乙烯/顺丁橡胶合金结构的X光小角散射研究,中国塑料,2004,18,49
    8. Bruijn R A, Schow W R, Behavior of Deformed Droplets in an Immiscible Polymer Blends, Phys. Fluids,1975,18,420
    9. Rumscheidt F D, Mason S G, Deformation Study of Fluorinated Multiwalled Carbon Nanotube and Fluorinated Ethylene-Propylene Nanocomposite Fibers, J. Col. Sci.,1961,16,238
    10. Grace H P. The Viscosity of a Fluid Containing Small Drops of Another Fluid, Chem. Eng. Comm.,1982,14,225
    11. Burch H E, Scott C E, Effect of Viscosity Ratio on Structure Evolution in Immiscible Polymer Blends, Polymer,2001,42,7313
    12. Jana S C, Sau M, The Formation Emulsions in Definable Fields of Flow, Polymer, 2004,45,1665
    13. Yi X, Xu L, Wang Y L, et al, Morphology and Properties of Isotactic Polypropylene/poly(ethylene terephthalate) in Situ Microfibrillar Reinforced Blends:Influence of Viscosity Ratio, Euro. Poly. J.,2010,46,719
    14. Clarke N, Mcleish T C. Image Analysis for Interfacial Area and Co-continuity Detection in Polymer Blends, Macro.,1997,30,4459
    15. Zhang H D, Zhang J W, Yang Y L, Spinodal Decomposition in Asymmetric Polymer Mixtures, Macro. Theo. Simu.,1995,4,1001
    16.杨玉良,邱枫,唐萍,张红东,高分子体系相分离动力学及图样生成和选择,化学进展,2006,18,36
    17.蒋秀丽,张红东,张振利,杨玉良,粘度对聚合物共混物相分离动力学的影响研究,高等学校化学学报,2003,24,532
    18. Tatsuhiro I, Akira F, Viscoelastic Phase Separation in Shear Flow, Phy. Rev. E, 2004,70,051503
    19. Takeji H, Mikihito T, Hiroyuki T, Viscoelastic Effects on Early Stage of SD in Dynamically Asymmetric Polymer Blends. J. Chem. Phys.,2006,124,104904
    20. Takeji A, Hajime T, Viscoelastic Phase Separation in Soft Matter:Numerical Simulation Study on its Physical Mechanism, Chem. Eng. Sci.,2006,2108
    21.杨宇平,聚丙烯/顺丁橡胶共混物相结构形成演变及其分散动力学研究,天津大学博士学位论文,2006
    22. Keungjin S, Sug H B, White J L, A Comparative Study of Dispersing a Polyamide-6 into a Polypropylene Melt in a Buss Kneader, Continuous Mixer, and Modular Intermeshing Co-rotating and Counter-Rotating Twin Screw Extruders,Poly.Eng.Sci.2008,48,756
    23.陈合玉,俞炜,周持兴,啮合同向双螺杆挤出过程中停留时间的模拟研究,中国塑料,2007,11,91
    24.郑泓,俞炜,张洪斌,周持兴,同向啮合双螺杆挤出机挤出过程的计算机模拟,高分子学报,2006,5,676
    25.杨海波,啮合同向双螺杆挤出机混合原件中物料三维流动路径及共混物混合物形态计算,北京化工大学硕士研究生学位论文2003,
    26. Taylor G L, The Viscosity of a Fluid Containing Small Drops of Another Fluid, Pro. R., Soc.,1932,A138,41
    27. Taylor G L, The Formation Emulsions in Definable Fields of Flow. Pro. R. Soc., 1934, A146,501
    28. Cox R G, The Deformation of a Drop in a General Time-Dependent Fluid Flow. J. Non-New. Flu. Mech.,1969,37,601
    29.张洪斌,周持兴,流场中聚合物共混体系液滴形变的理论模型,力学进展,1998,28,402
    30. Rallison J M, A Note on the Time-Dependent Deformation of a Viscous Drop Which is Almost Spherical. J. Non-New. Flu. Mech.,1980,98,625
    31. Vanoene H. Modes of Dispersion of Viscoelastic Fluids in Flow. J. Col. Inter. Sci., 1972,40,448
    32. Acrivos A, Lo T S. Deformation and Breakup of a Single Slender Drop in an Extensional Flow. J. Non-New. Flu. Mech.,1978,86,641
    33. Choi S J, Mason S G. Rheological Properties of Nondilute Suspensions of Deformable Particles. Physical Fluids,1975,18,420
    34. Schowalter W R, Torza S, Cox R G, Particle Motions in Sheared Suspensions: Transient and Steady Deformation and Burst of Liquid Drops. J. Col. Inter. Sci., 1972,38,395
    35. Chin H B, Han C D. Studies on Droplet Deformation and Breakup. J. Rheo., 1979,23,557
    36.张洪斌,流场中聚合物共混体系分散相的形态研究,上海交通大学博士学位论文。上海:上海交通大学,1998
    37. Janssen J M. Dynamics of Liquid-Liquid Mixing. Ph D thesis. Eindhoven University of Technology. The Netherlands.1993
    38. Tomotika S, On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous, Fluid. Pro. R. Soc.,1935, A150,322
    39. Tomotika S, Breaking Up of a Droplet of Viscous liquid Immersed in Another Viscous Fluid Which is Extending at a Uniform Rate. Pro. R. Soc,1936, A153,302
    40. Maffettone P L, Minale M, Equation of Change for Ellipsoidal Drops in Viscous Flow, J. Non-New. Flu. Mech.,1998,78,227
    41. Palieme J F, The Nonlinear Strain Measure of Polyisobutylene Melt in General Biaxial Flow and its Comparison to the Doi-Edwards Model, Rheo. Act., 1990,29,604
    42.朱育平,《小角X射线散射—理论、测试、计算、及应用》,北京:化学工业出版社,2008,P13
    43. Chen X M, Burger C, Fang D F, In-situ x-ray Deformation Study of Fluorinated Multiwalled Carbon Nanotube and Fluorinated Ethylene Propylene Nanocomposite Fibers, Macro.,2006,39,5427
    44. Zdenek S, Josef B, Hana S, Behavior of Deformed Droplets in an Immiscible Polymer Blends:A Comparative Study of Electron Microscopy and Small-angle X-Ray Scattering, Macro. Mate. Eng.2009,294,860
    45. Debye P, Bueche A N, Scattering by an Inhomogeneous Solid, J. Appl. Phys., 1949,20,518
    46. Kratky O., Possibilities of X-ray Small Angle Analysis in the Investigation of Dissolved and Solid High Polymer Substances, Pure. Appl. Chem.,1966,12,483
    47.马桂秋,原续波,盛京,小角X光散射法研究聚丙烯/乙丙橡胶合金的相结构,高分子学报,2002,1,63
    48. Ma G Q, Zhao Y H, Yan L T, et al, Blends of Polypropylene with Poly(cis-butadiene)Rubber. Ⅲ. Study on the Phase Structure and Morphology of Incompatible Blends of Polypropylene with poly(cis-butadiene)Rubber, J. Appl. Poly. Sci.,2006,100,4900
    49.荣利霞,魏柳荷,董宝中,王俊,两亲性嵌段聚合物的同步辐射小角X射线散射的研究,物理学报,2002,51,1773
    50. Koberstein J T, Morra B, Stei R S, Development of Polymer Blends Morphology During Compounding in a Twin Screw Extruder, J. Appl. Cry.,1980,13
    51. Hulst H C. Light Scattering by Small Particles [M]. New York:John Wiley & Sons,1957
    52. Zarzycki J. The Effect of Processing Parameters on the Morphology of an Immiscible Binary Blend, J. Non-Cry. Sol.,1990,11,121
    53.张洪斌,周持兴,流场中高分子共混物分散相的形态变化,高分子材料科学与工程,1999,15,4
    54.陈绪煌,马桂秋,盛京,聚合物共混相形态形成过程及其理论研究进展,高分子通报,2009,1,31
    55.林长志,郭烈锦,张西民,剪切流中液滴变形破裂机理的实验研究,工程热物理学报,2007,28,972
    56. Utracki L A, Shi Z H, Development of Polymer Blend Morphology During Compounding in a Twin Screw Extruder. Part I:Droplet Dispersion and Coalescence 3/a Review. Poly. Eng. Sci.,1992,32,1824
    57. Sundararaj U, Dori Y, Macosko C W, Visualization of Morphology Development in Polymer Blends. Annual Technical Conference:Society of Plastics Engineers, 1994,334
    58. Omonov T S, Harrats C, Modenaers P, et al, Phase Continuity Detection and Phase Inversion Phenomena in Immiscible PP/PS Blends with Different Viscosity Ratios, Polymer,2007,48,5917
    59. Fang Z P, Ma G W, Cai G P, Influence of Viscosity Ratio on the Morphology of PVC/PE Blends, Euro. Poly. J.,2000,36,2309
    60. Chen X H, Ma G Q, Li J Q, et al, Study on Morphology Evolution and Fractal Character of the Miscible Blend Between iPP and mEP, Polymer,2009,50,3347
    61. Villmow T, Kretzschmar B, Potschke P, Influence of Screw Configuration, Residence Time and Specific Mechanical Energy in Twin Screw Extrusion of Polycaprolactone/Multi-Walled Carbon Nanotube Composites, Com. Sci. and Tech.,2010,70,2045
    62. Bi C, Jiang B, Study of Residence Time Distribution in a Reciprocating Single Screw Pin-Barrel Extruder, J. Mate. Proc. Tech.,2009,209,4147
    63. Bauer R D, Pillai A M, Toughness and Brittleness of Plastics, Copyright, Advances in Chemistry Series, Adv. in Chem.,1976,154,284
    64. Khambatta F B, Warner F, Russell T, et al. Small Angle X-ray and Light Scattering Studies of the Morphology of Blends of Poly(□-caprolactone) with Poly(vinyl chloride).J. Poly. Sci.,1976,14,1391
    65.姜键飞,胡良剑,唐俭,数值分析及其MATLAB实验,2004年,科学出版社,P91-P92
    66. Hanselman D, Littlefield B著,朱仁峰译,《精通Matlab》,2006年,清华大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700