用户名: 密码: 验证码:
基于分子识别原理的快速检测技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品安全问题是关系到国计民生和社会稳定的重大公共安全问题,近年来,食品质量安全问题日益突出,一直倍受世人的关注。因此,加快开发快速、灵敏、稳定的食品安全检测技术及产品势在必行。
     目前,农药、兽药和食品添加剂残留的检测广泛使用的方法是色谱质谱联用技术或生物免疫检测方法,这势必存在设备昂贵、样品前处理麻烦、样品检测数量有限、使用技能要求较高等问题,远远满足不了食品安全保障的需求。本课题提出基于分子识别原理,探索快速检测技术的新思路。以三聚氰胺这个食品安全的热点问题为切入点,设计合成了一个能与三聚氰胺发生相互作用的识别分子,探索了三聚氰胺与识别分子之间的相互作用过程,并借助可变色的聚联乙炔囊泡,构建了一个三聚氰胺可视化感受元件并对其初步应用进行了研究,为后期基于分子识别原理的快速检测技术方法的研究奠定了基础。
     本课题研究的内容有:
     (1)识别分子的合成及性质表征
     采用乳清酸作为亲水基,1,12-二氨基十二烷作为疏水链合成带有识别基团的bola型两亲分子——1,12-二乳清酸基十二烷基二胺盐(1,12-diaminododecane diorotate,简称DDO),通过傅里叶变换红外光谱(FT-IR)和核磁共振波谱(NMR)鉴定了产物的结构,用动态光散射技术(DLS)、荧光探针技术、等温滴定量热技术(ITC)、透射显微技术(TEM)、电化学工作站等详细研究了DDO分子的性质及其在水溶液中发生自聚集行为的机制,实验结果表明这种带有识别基团的DDO分子在水溶液中能自发形成囊泡结构。同时,研究了DDO分子与异电性传统表面活性剂混合体系形成囊泡的情况,ITC和TEM等结果表明上述混合体系在很宽的混和比例下都有囊泡存在,说明DDO与异电性传统表面活性剂混合体系有较强的形成囊泡的能力,尤其是SDS/DDO混合体系。另外,NaBr可以诱导SDS/DDO混合体系表现出较为丰富的聚集行为,包括囊泡,丝状,网状等结构,说明DDO聚集体的尺寸和形态具有可操控性。因此,DDO分子带有的分子识别基团使其具备作为识别分子的潜力,DDO分子的两亲性使其在溶液中聚集为囊泡,为分子识别提供更大的界面,为实现三聚氰胺的检测奠定了基础。
     (2)DDO与三聚氰胺识别过程的研究
     本研究发现三聚氰胺具有荧光特性,三维荧光光谱中,当激发波长为250nm时,发射波长为360 nm附近有较强的荧光信号。同时,由于DDO的亲水部分既是氢键的供体又是氢键的受体,可以和三聚氰胺形成氢键,这种分子间的相互作用使三聚氰胺的荧光猝灭。研究还发现,DDO分子聚集形成囊泡后与其单体分子相比对三聚氰胺的荧光猝灭效率更高。DDO使三聚氰胺的荧光发生猝灭涉及两种机制,当三聚氰胺浓度较低时(5×10-5 mol/L),发生静态猝灭,当三聚氰胺浓度较高时(2×10-3mol/L),同时发生动态猝灭和静态猝灭。
     ITC测定的三聚氰胺与DDO相互作用的热力学参数显示吉布斯自由能(△G)是负值,说明两者之间的相互作用是自发进行的。低场脉冲核磁测定三聚氰胺与DDO混合体系的横向驰豫时间T2,表明DDO分子降低了三聚氰胺和水的结合度,DDO和三聚氰胺之间形成了稳定的氢键。因此,DDO可以作为检测三聚氰胺的识别分子。
     (3)三聚氰胺可视化感受元件的初步应用研究
     以聚联乙炔变色囊泡作为DDO分子检测三聚氰胺的载体,构建了一个三聚氰胺可视化感受元件。通过DDO的疏水链与变色囊泡的疏水链之间的吸引力将其锚定于囊泡中,构造一种将检测与显示集为一体的聚联乙炔变色囊泡,分子识别的过程通过变色囊泡的颜色改变而反映,由此初步实现三聚氰胺的可视化检测。为食品中三聚氰胺的检测提供了快速、高效、绿色的新方法和途径,更重要的是可以藉此构建基于分子识别原理的快速检测平台。
Food safety is an important social problem, which directly influences national economy, people's livelihood and social stability. Recent years, the high incidence of food safety events attracts much attention. Therefore, it is imperative to accelerate the exploitation of rapid, sensitive and stable detection technologies and products of food safety.
     In recent years, detection and analysis technique for pesticide, veterinary drug and additive rudimental are chromatograph/mass spectrum tandem detecting technique, immunology and biological method. But they are greatly constrained by high price of instrument, long time of experiment, complex pretreatment, limited units of test sample, high level of skill and other factors, so they could not meet the food safety requirements. The paper explored new ideas of rapid detection technique based on molecular recognition. The article taken the hot issues of food safety——melamine as key point and designed and synthesised a molecular probes to interact with melamine. The paper also explored the recognition process of intermolecular interaction.The preliminary visualization sensor was designed and constructed, and several tests were performed to detect the concentration of melamine in solution. All these settled the foundation for the further rapid detection methodology based on molecular recognition.
     The main research work is as follows:
     (1) The design, synthesis and characterization of host molecules for recognition.
     1,12-diorotate diaminododecane (DDO) was synthesized by L-orotic acid and 1,12-dodecanediamine and the structure of DDO was characterized by fourier transform infrared spectrometer (FTIR) and nuclear magnetic resonance (NMR). The properties and self-aggregation behavior of DDO in water were determined by dynamic light scattering (DLS), fluorescence spectroscopy, isothermal titration calorimetry (ITC), transmission electron microscope (TEM) and electrochemical workstation. The experiment results showed that DDO itself could form vesicles easily in aqueous solutions with molecular recognition function moieties. Meanwhile, vesicles formation in DDO/conventional surfactant mixed systems was studied. ITC and TEM results revealed that vesicles existing in the above mixed systems, indicating the strong vesicle formation ability in DDO/conventional surfactant mixed systems, especially in SDS/DDO mixed system. Moreover, it was identified that sodium bromide could induce the transition from vesicle to abundant aggregation behaviors, including filiform texture, reticular formation and so on. Therefore, the size and shape of vesicles could be controled by varying conditions. In conclusion, DDO had great potential as a host molecular for detecting melamine. These settled the foundation for the further application study.
     (2) The interaction of melamine and DDO during the recognition process.
     It was found that melamine had favorable fluorescence property which exaion wavelengthλex=250 nm and the emission wavelengthλem=360 nm. Meanwhile, DDO interacts with melamine though complementary hydrogen bonding easily based on its proton acceptors and donors characters in hydrophilic group. Intermolecular interaction between DDO and melamine lead to fuorescence quenching of melamine. It was also found that the fluorescence of melamine was quenched more effectively by the spontaneously formed vesicles than by the monomers of the surfactant. Two mechanisms were involved in the fluorescence quench process. At lower concentration (5×10-5 mol/L), the fluorescence of melamine was found to be quenched by static complex formation. While at higher concentration (2×10-3mol/L), both static and dynamic quenching mechanisms coexisted in interaction process. Thermodynamic parameters measured by ITC showed that the free energy (ΔG) was negative, indicating that binding of DDO molecules with melamine was favorable energetically.Transverse relaxation T2 measured by low field pulsed NMR showed that a loose bonding between melamine and water, implying hydrogen bond formation between DDO and melamine. All of the results evidenced the molecular recognition taking place between DDO and melamine.
     (3) Application research of melamine visualization sensor preliminary.
     Polydiacetylene vesicles were selected as carrier of DDO dectecting melamine. The functional molecules DDO were successfully incorporated into the polydiacetylene vesicles by interaction between hydrophobic chains, therefrom, constructing a vesicle which set detection and discoloration as one. The process of molecular recognition could be reflected by the color change of polydiacetylene vesicles. Thus, DDO molecular already realised detecting melamine preliminary. These provided a fast, efficient, green way to detect melamine in food system and constructed a new platform to comprehensive, rapid, accurate food safety testing.
引文
[1]Wohler F. Ueber Kunstliche Bildung des Harnstoffs [J]. Annalen Der Physik Und Chemie,1828,88 (2):253-256.
    [2]Steed J W, Atwood J L. Supramolecular Chemistry [M]. John Wiley & Sons Inc Publishers,2009:1-22.
    [3]Behr J P. The Lock-and-Key Principle, the State of the Art-100 Years on [M]. John Wiley & Sons Inc Publishers,1995:1-15.
    [4]Gellman S H. Introduction:Molecular Recognition [J]. Chemical Reviews,1997, 97(5):1231-1232.
    [5]Maverick E, Cram D J. Spherands:Hosts Preorganized for Binding Cations [J]. ChemInform,1997,28(2):213-243.
    [6]徐筱杰.超分子建筑-从分子到材料[M].北京:科学技术文献出版社,2000:40-47.
    [7]王宇,唐黎明.氢键识别超分子聚合物的新进展[J].化学进展,2007,5(19):769-778.
    [8]Huheey J E, Keiter E A, Keiter R L. Inorganic Chemistry:Principles of Structure and Reactivity [M]. Prentice Hall Publishers,1997:27-39.
    [9]Hancock R D. Chelate Ring Size and Metal Ion Selection. The Basis of Selectivity for Metal Ions in Open-Chain Ligands and Macrocycles [J]. Journal of Chemical Education,1992,69 (8):615-621.
    [10]王晓钟,陈英奇,陈新志,等.有机分子识别和聚集体组装中的非共价键协同作用[J].化学进展,2005,5(17):451-458.
    [11]Gellman S H. Introduction:Molecular Recognition [J]. Chemical Reviews,1997,97 (5):1231-1232.
    [12]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装[M].南开大学出版社,2001.
    [13]Tian J, Cai T, Yuan Z, et al. Binding of Src to Na+/K+-ATPase Forms a Functional Signaling Complex [J]. Molecular Biology of the Cell,2006,17(1):317-326.
    [14]Whitcombe M J, Rodriguez M E, Villar P, et al. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol [J]. Journal of the American Chemical Society,1995,117 (27):7105-7111.
    [15]刘玉法,都爱友,王晓娟,等.环糊精应用新进展:构筑分子选择性光化学传感器[J].化学试剂,2001,23(2):82-83.
    [16]吴世康.荧光化学传感器研究中的光化学与光物理问题[J].化学进展,2004,3(16):174-183.
    [17]苏晓渝,谢如刚.超分子自组装中的非共价键协同作用[J].化学研究与应用,2007,19(12):1304-1310.
    [18]刘海林,马晓燕,袁莉,等.分子自组装研究进展[J].材料科学与工程学报,2004,2(22):308-311.
    [19]Corinne L D. Estimating the Efficiency of Self-Assemblies [J]. Journal of Supramoleular Chemistry,2001,1(1):39-52.
    [20]Huie J C. Guided Mmolecular Self-assembly:a Review of Recent Efforts [J]. Smart Materials and Structures,2003,12(2):264-276.
    [21]邢丽,张复实,向军辉,等.自组装技术及其研究进展[J].世界科技研究与发展,2007,6(29):39-44.
    [22]Tseng R J, Huang J X, Ouyang J Q, et al. Polyaniline Nanofiber/GoldNanoparticl Nonvolatile Memory [J]. Nano Letters,2005,6(5):1077-1080.
    [23]Kima S H, Kwak S Y, Sohn B H, et al. Design of TiO2 Nanoparticle Self-assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane as an Approach to Solve Biofouling Problem [J]. Journal of Membrane Science,2003,211(1):157-165.
    [24]Santoso S, Hwang W, Hartman H, et al. Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles [J]. Nano Letters, 2007,7(2):687-691.
    [25]高晟.我国急需发展食品快速检测技术[J].化学分析计量,2010,19(3):6.
    [26]Tang Y L, Lu L X, Zhao W, et al. Rapid Detection Techniques for Biological and Chemical Contamination in Food:A Review [J]. International Journal of Food Engineering:2009,5(5):1-20.
    [27]杨小龙,陈朝琼.食品微生物快速检测技术研究进展[J].河北农业科学,2008,12(12):51-53.
    [28]Shankaran D R, Gobi K V, Miura N. Recent Advancements in Surface Plasmon Resonance Immunosensors for Detection of Small Mmolecules of Biomedical, Food and Environmental Interest [J]. Sensors and Actuators B:Chemical,2007,121(1): 158-177.
    [29]Okihashi M, Kitagawa Y, Akutsu K, et al. Rapid Method for the Determination of 180 Pesticide Residues in Foods by Gas Chromatography/Mass Spectrometry and Flame Photometric Detection [J]. Journal of Pesticide Science,2005,4:368-377.
    [30]赵敏,陆洪菊.畜禽兽药残留的危害及其控制[J].上海畜牧兽医通讯,2009,1:82-84.
    [31]Kim M K, Chao K L, Chan D, et al. Nondestructive Sensing Technologies for Food Safety [C]. Nondestructive Sensing Technologies for Food Safety, International Symposium for Improvement of Agro-Food Safety Proceedings, Meeting Proceedings:119-126.
    [32]卜凡艳,韩剑众.无损检测技术在食品品质检测中的应用[J].食品工业科技,2007,7(28):221-224.
    [33]李敏,潘丙珍,庞世琦,等.无损检测技术在食品分析中的应用[J].检验检疫科学,2008,6:60-62.
    [34]周焕英,高志贤,孙思明,等.食品安全现场快检测技术研究进展及应用[J].分析测试学报,2008,7(27):788-794.
    [35]吴毓林,陈耀全.分子识别指导下的有机分子设计、合成和组装——世纪交替时代的有机化学[J].化学进展,1994,6(6):294-300.
    [36]GB/T 22388-2008,原料乳与乳制品中三聚氰胺检测方法[S].
    [37]Dobson R L M, Motlagh S, Quijano M, et al. Identification and Characterization of Toxicity of Contaminants in Pet Food Leading to an Outbreak of Renal Toxicity in Cats and Dogs [J]. Toxicological Sciences,2008,1(16):251-262.
    [38]Zhang H M, Xie Z X, Long L S, et al. One-Step Preparation of Large-Scale Self-Assembled Monolayers of Cyanuric Acid and Melamine Supramolecular Species on Au(111) Surfaces [J]. Journal of Physical Chemistry C,2008,112(11): 4209-4218.
    [39]Olivier F, Mercedes C C, Ingrid L, et al. Covalent Linkage of Melamine and Cyanurate Improves the Thermodynamic Stability of Hydrogen-Bonded Double Rosettes in Polar Solvents [J]. European Journal of Organic Chemistry,2003: 1463-1474.
    [40]Lehn L M. Supramolecular Ppolymer Ehemistry-Scope and Perspectives [J]. Polymer International,2002,51:825-839.
    [41]Sarkhel S, Desiraju G R. N—H---O,O—H---O,and C-H---O Hydrogen Bonds in Protein-Ligand Complexes:Strong and Weak Interactions in Molecular Recognition [J]. Proteins:Structure, Function and Bioinformatics,2004,54(2):247-259.
    [42]Fendler J H著,江龙等译,尖端材料的膜模拟[M],北京:科学出版社,1999.
    [43]Jha B K, Svensson M, Kronberg K, et al. Titration Microcalorimetry Studies of the Interaction between Humicola lanuginose Lipase and Ionic Surfactants [J]. Journal of Colloid and Interface Science,1999,213(1):262-264.
    [44]Pisani E, Fattal E, Paris J, et al. Surfactant Dependent Morphology of Polymeric Capsules of Perfluorooctyl Bromide:Influence of Polymer Adsorption at the Dichloromethane-Water Interface [J]. Journal of Colloid and Interface Science,2008, 326(1):66-71.
    [45]Miyasakai T, Koyama K, Isamuitoh. Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor [J]. Science,1992,17(255):342-344.
    [46]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [47]金谷.表面活性剂化学[M].安徽:中国科学技术大学出版社,2008.
    [48]Fuhrhop J H, Fritsch D. Bolaamphiphiles form Ultrathin, Porous, and Unsymmetric Monolayer Lipid M membranes [J]. Accounts of Chemical Research,1986,19: 130-137.
    [49]Fuhrhop J H, Wang T Y. Bolaamphiphiles [J]. Chemical Reviews,2004,104: 2901-2937.
    [50]Yan Y, Lu T, Huang J B. Recent Advances in the Mixed Systems of Bolaamphiphiles and Oppositely Charged Conventional Ssurfactants [J]. Journal of Colloid and Interface Science,2009,337:1-10.
    [51]Sun X L, Biswas N, Kai T, et al. Membrane-Mimetic Films of Asymmetric Phosphatidylcholine Lipid Bolaamphiphiles [J]. Langmuir,2006,22(3):1201-1208.
    [52]Gregory H. Escamilla, George R, et al. Bolaamphiphiles:Golf Ball to Fibers [J]. Angewandte Chemie International Edition,2006,19:1937-1940.
    [53]Li Q, Mittal R, Huang L J, et al. Bolaamphiphiles-Class Surfactants Can Stabilize and Support the Function of Solubilized Integral Membrane Proteins [J]. Biochemistry, 2009,48:11606-11608.
    [54]Brunelle M, Polidri A, Denoyelle S, et al. Astructure-Activity Invstigation of Hemifluorinated Bifunctional Bolaamphiphiles Designed for Gene Delivery [J]. Comptes Rendus Chimie,2009,12:188-208.
    [55]Song B, Wu G L, Wang Z Q, et al. Metal-Ligand Coordination-Induced Self-assembly of Bolaamphiphiles Bearing Bipyrimidine [J]. Langmuir,2009,25(23):13306-13310.
    [56]Sistach S, Rahme K, Perignon N, et al. Bolaamphiphile Surfactants as Nanoparticle Stabilizers:Application to Reversible Aggregation of Gold Nanoparticles [J]. Chemistry of Materials,2008,20:1221-1223.
    [57]姜宇嵘,栾吉梅,刘平芹,等.Bola型表面活性剂[J].精细与专用化学品,2006,14:14-19.
    [58]Fuoss R M, Edelson D. Bolaform Electrolytes. I. Di-(P-trimethylammonium Ethyl) Succinate Dibromide and Related Compounds [J]. Journal of the American Chemical Society,1951,73(1):269-273.
    [59]赵小莉,黄建滨,李子臣,等.Bola型表面活性剂1.表面性质与胶团[J].日用化学工业,2000,5:26-29.
    [60]Huang J B, Han F, He X.et al, Surface Properties and Aggregates in the Mixed Systems of Bolaamphiphiles and Their Oppositely Charged Conventional Surfactants [J]. Journal of Physical Chemistry B,2004,108(17):5256-5262.
    [61]Matsuzawa Y, Kogiso M, Matsumoto M, et al. Stable Spherical Hollow Particles Composed of Bola-form Amides via Non-covalent Iinteractions [J]. Journal of Materials Chemistry,2004,14:3532-3539.
    [62]赵小莉,黄建滨,李子臣,等.Bola型表面活性剂2.Bola化合物囊泡[J].日用化学工业,2000,6:26-29.
    [63]Eggers P K, Fyles T M, Mitchell K D D, et al. Ion Channels from Linear and Branched Bola-Amphiphiles [J]. Journal of Organic Chemistry,2003,68 (3):1050-1058.
    [64]Chen Y X, Liu Y, Guo R. Aggregation Behavior of an Amino Acid-derived Bolaamphiphile and a Conventional Surfactant mixed System [J]. Journal of Colloid and Interface Science,2009,336(2):766-772.
    [65]Kohler K, Forster G, Hauser A, et al. Temperature-Dependent Behavior of a Symmetric Long-Chain Bolaamphiphile with Phosphocholine Headgroups in Water: From Hydrogel to Nanoparticles [J]. Journal of the American Chemical Society,2004, 126(51):16804-16813.
    [66]Sirieix J, Viguerie N L, Riviere M, et al. Aggregation Behavior of Urocanic Acid Bolaamphiphiles [J]. Langmuir,2000,16:9221-9224.
    [67]金勇,苗青,张彪,等.Bola型表面活性剂合成及其应用[J].化学进展,2008,6:918-930.
    [68]Lehn J M. Supramolecular Chemistry [M]. VCH:Weinheim Publishers,1995.
    [69]Ariga K, Kunitake T. Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction [J]. Accounts of Chemical Research,1998,31(6):371-378.
    [70]Fersht A R. The Hydrogen Bond in Molecular Recognition [J]. Trends in Biochemical Sciences,1987,12:301-304.
    [71]Kunitake T, Yoshihara K, Koyano H, et al. Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces [J]. Journal of the American Chemical Society,1996,118(36):8524-8530.
    [72]Miao W, Du X, Liang Y. Molecular Recognition of 1-(2-Octadecyloxycarbonylethyl)- cytosine Monolayers to Guanosine at the Air-Water Interface Investigated by Infrared Reflection-Absorption Spectroscopy [J]. Journal of Physical Chemistry B, 2003,107(49):13636-13642.
    [73]Wang Y C, Du X Z, Miao W, et al. Molecular Recognition of Cytosine- and Guanine-Functionalized Nucleolipids in the Mixed Monolayers at the Air-Water Interface and Langmuir-Blodgett Films [J]. Journal of Physical Chemistry B,2006, 110(10):4914-4923.
    [74]Corvis Y, Korchowiec B, Korchowiec J, et al. Complexation of Metal Ions in Langmuir Films Formed with Two Amphiphilic Dioxadithia Crown Ethers [J]. Journal of Physical Chemistry B,2008,112(35):10953-10963.
    [75]Yang M, Wang W, Lieberwirth I, et al. Multiple H-Bonds Directed Self-Assembly of an Amphiphilic and Plate-Like Codendrimer with Janus Faces at Water-Air Interface [J]. Journal of the American Chemical Society,2009,131(17):6283-6292.
    [76]Kjeellin M, Johansson I. Surfactants from Renewable Resources [M]. John Wiley & Sons Inc Publishers,2010:85-100.
    [77]陈玉霞.Bola型表面活性剂1,12-二组氨基酸十二烷基二胺盐的性质研究[J].应用化工,2010,39(4):571-575.
    [78]Vitamin B13 (Orotic Acid) [EB/OL]. http://www.dietandfitnesstoday.com/vitamin B13.php.
    [79]Husebye E, Skar V, H(?)verstad T, et al. Fasting Hypochlorhydria with Gram Positive Gastric Flora is Highly Prevalent in Healthy Old People [J]. Gut,1992,33(10): 1331-1337.
    [80]Greenbaum S B. Orotic acid antagonist:6-Uracilsulfonic Acid, a Sulronic Acid Analog of Orotic Acid [J]. Journal of the American Chemical Society,1954,76 (23): 6052-6054.
    [81]Rodehiiser L, Chaumette H, Meyers A, et al. Derivatives of Glutamic Acid as New Surfactants [J]. Amino Axids,2000,18:89-100.
    [82]郭宜鲁,武培怡.傅立叶变换红外光谱对琥珀酸-2-乙基己基磺酸钠非极性溶液中反胶束结构的研究[J].化学学报,2008,66(14):1758-1762.
    [83]林贤福.现代波谱分析方法[M].华东理工大学出版社,2009:44-45.
    [84]Ye L B, Zhang J S, Yan Y, et al. Structural Characterisation of a Heteropoly-Saccharide by NMR Spectra [J]. Food Chemistry,2009,112(4):962-966.
    [85]Thomas, J. K. The Chemistry of Excitation at Interfaces [M]. Washington:American Chemical Society Publishers,1984.
    [86]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度[J].石化技术与应用,2007,25(1):48-50.
    [87]Kalyanasundaram K, Thomas J K. Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems [J]. Journal of the American Chemical Society,1977,99(7): 2039-2044.
    [88]Visscher I, Engberts J B F N. Vesicles of Mixtures of the Bolaform Amphiphile Sodium Di-n-decyl α,ω-Eicosanyl Bisphosphate and Sodium Di-n-decyl Phosphate [J]. Langmuir,2000,16(1):52-58.
    [89]Franceschi S, Andreu V, Viguerie N d, et al. Synthesis and Aggregation Behaviour of Two-headed Surfactants Containing the Urocanic Acid Moiety [J]. New Journal of Chemistry,1998,22:225-231.
    [90]Munoz S, Mallen J, Nakao A, et al. Ultrathin Monolayer Lipid Membranes from a New Family of Crown Ether-based Bola-amphiphiles [J]. Journal of the American Chemical Society,1993,115(5):1705-1711.
    [91]Bandyopadhyay P, Bharadwaj P K. Spontaneous Formation of Vesicles by a Cryptand-Based Bola-Amphiphile [J]. Langmuir,1998,14:7537-7538.
    [92]Sirieix J, Viguerie N L, Riviere M, et al. From Unsymmetrical Bolaamphiphiles to Supermolecules [J]. New Journal of Chemistry,2000,24:1043-1048.
    [93]Ambrosi M, Fratini E, Alfredsson V, et al. Nanotubes from a Vitamin C-Based Bolaamphiphile [J]. Journal of the American Chemical Society,2006,128(22): 7209-7214.
    [94]Bhattacharya S, Biswas J. Understanding Membranes through the Molecular Design of Lipids [J]. Langmuir,2010,26:4642-4654.
    [95]蔡超,高作宁.阳离子表面活性剂溶液的临界胶束浓度及扩散系数[J].化学研究与应用,2004,5(16):643-645.
    [96]Newton M R, Morey K A, Zhang Y H, et al. Anisotropic Diffusion in Face Centered Cubic Opals [J]. Nano Letters,2004,4:875-880.
    [97]Chen Z X, Deng S P, Li X K. Micellization and Synergistic Interaction of Binary Surfactant Mixtures Based on Sodium Nonylphenol Polyoxyethylene Ether Sulfate [J]. Journal of Colloid and Interface Science,2008,318:389-396.
    [98]Fuhrhop J H, David H H, Mathieu J, et al. Bolaamphiphiles and Monolayer Lipid Membranes Made from 1,6,19,24-Tetraoxa-3,21-cyclohexatriacontadiene-2,5,20,23-tetrone [J]. Journal of the American Chemical Society,1986,108:1785-1791
    [99]Ciro D M C D, Shankar B R, Sonke S, et al. Bolaamphiphilic Phosphocholines: Structure and Phase Behavior in Aqueous Media [J]. Langmuir,2000,16,128-133.
    [100]Ting Lu, Feng Han, Guangru Mao, et al. Effect of Hydrocarbon Parts of the Polar Headgroup on Surfactant Aggregates in Gemini and Bola Surfactant Solutions [J]. Langmuir,2007,23:2932-2936.
    [101]Yan Y, Huang J B, Li Z C, et al. Aggregates Transition Depending on the Concentration in the Cationic Bolaamphiphile/SDS Mixed Systems [J]. Langmuir, 2003,19:972-974
    [102]Lu T, Han F, Li Z C, et al. Transitions of Organized Assemblies in Mixed Systems of Cationic Bolaamphiphile and Anionic Conventional Surfactants [J]. Langmuir,2006, 22:2045-2049.
    [103]Yan Y, Huang J B, Li Z C, et al. Surface Properties of Cationic Bolaamphiphiles and Their Mixed Systems with Oppositely Charged Conventional Surfactant [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,215: 263-275.
    [104]Jelesarov I, Bosshard H R. Isothermal Titration Calorimetry and Differential Scanning Calorimetry as Complementary Tools to Investigate the Energetics of Biomolecular Recognition [J]. Journal of Molecular Recognition,1999,12:3-18.
    [105]Holdgate G A, Ward W H J. Measurements of Binding Thermodynamics in Drug Discovery [J]. Drug Design Today,2005,10(22):1543-1550.
    [106]Misra P K, Panigrahi S, Dash U, et al. Organization of amphiphiles. Part XI: Physico-chemical Aspects of Mmixedmicellization Involving Normal Conventional Surfactant and a Non-ionic Gemini Surfactant [J]. Journal of Colloid and Interface Science,2010,345(2):392-401.
    [107]Ohki S, Ohshima H, Interaction and Aggregation of Lipid Vesicles (DLVO Theory vs Modified DLVO Theory) [J]. Collloids and Surfaces B:Biointerfaces,1999,14: 27-45.
    [108]Carmona R A M, Yoshida L S, Chaimovich H. Salt Effects on the Stability of Dioctadecyldimethylammonium Chloride and Sodium Dihexadecyl Phosphate Vesicles [J]. Journal of Physical Chemistry,1985,89(13):2928-2933.
    [109]韩彩芹,刘莹,赵文艳,等.三聚氰胺溶液的荧光光谱实验研究[J].光学学报,2009,29(11):1-5.
    [110]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006:18-20.
    [111]Chu D Y, Thomas J K. Photophysical Studies of Awater-soluble Copolymer of Methacrylic Acid and 1-pyreneacrylic Acid [J]. Macromolecules,1984,17(10):2142-2147.
    [112]房喻,王辉.荧光寿命测定的现代方法与应用[J].化学通报,2001,10:631-636.
    [113]Lakowicz J R. Principles of Fluorescence Spectroscopy [M]. New York:Kluwer Academic/Plenum Publishers,1999.
    [114]Kim H J, Hong J, Hong A, et al. Cu2+-Induced Intermolecular Static Excimer Formation of Pyrenealkylamine [J]. Organic Letters,2008,10(10):1963-1966.
    [115]Brun A M, Harriman A. Energy- and Electron-Transfer Processes Involving Palladium Porphyrins Bound to DNA [J]. Journal of the American Chemical Society, 1994,116(23):10383-10393.
    [116]Zhang Y Z, Zhou B, Liu Y X, et al. Fluorescence Study on the Interaction of Bovine Serum Albumin with P-aminoazobenzene [J]. Journal of Fluorescence,2008,18(1): 109-118.
    [117]Eftink M R, Ghiron C A. Fluorescence Quenching Studies with Proteins [J]. Analytical Biochemistry,1981,114(2):199-227.
    [118]Delaire J A, Rodgers M A J, Webber S E. Quenching of Fluorescence in Water-Soluble Copolymers of Methacrylic Acid and Vinyldiphenylanthracene [J]. Journal of Physical Chemistry,1984,88(25):6219-6227.
    [119]Yamamoto H, Mizusaki M, Yoda K, et al. Fluorescence Studies of Hydrophobic Association of Random Copolymers of Sodium2-(Acrylamido)-2-methyl-propanesulfonate and N-Dodecylmethacrylamide in Water [J]. Macromolecules, 1998,31(11):3588-3594.
    [120]Morishima Y, Ohgi H, Kamachi M. Effect of Counterion Condensation on the Fluorescence Quenching of Phenanthrene-labeled Sodium Salt of Poly(acrylic acid-co-acrylamide) in Salt-free Solution [J]. Macromolecules,1993,26(16): 4293-4297.
    [121]Diaz X, Abuin E, Lissi E. Quenching of BSA Intrinsic Fluorescence by Alkylpyridinium Cations:Its Relationship to Surfactant-protein Association [J]. Journal of Photochem Photobiol A,2003,155(1-3):157-162.
    [122]Sun Q, Tong Z, Wang C, et al. Fluorescence Decay and Quenching of Pyrene Labeled on Sulfonate Polyelectrolytes in Salt-free Aqueous Solutions [J]. European Polymer Journal,2003,39(4):697-703.
    [123]Wu H M, Liang J G, Han H Y, et al. A Novel Method for the Determination of Pb2+ Based on the Quenching of the Fluorescence of CdTe Quantum Dots [J]. MicrochimicaActa,2008,161(1-2):81-86.
    [124]George G W, Hirt R C, Salley D J. Near Ultraviolet Absorption Spectra of Melamine and Some Related Compounds [J]. Journal of Physical Chemistry,1950,18(413): 434-441.
    [125]Dewar M J S, Paoloni L. The Electronic Structure of Melamine [J]. Transactions of the Faraday Society,1957,53:261-269.
    [126]Dixon K, Woodberry N. T, Costa G W. The Dissociation Constants of Melamine and Certain of its Compounds [J]. Journal of the American Chemical Society,1947,69 (3):599-603.
    [127]Hirt R C, Salley D J. Ultraviolet Absorption Spectra of Derivatives of Symmetric Triazine. I. Amino Triazines [J]. Journal of Physical Chemistry,1953,21(7): 1181-1190.
    [128]Klotz I M, Askounis T. Absorption Spectra and Tautomerism of Cyanuric Acid, Melamine and Some Related Compounds [J]. Journal of the American Chemical Society,1947,69 (4):801-803.
    [129]Bann B, Miller S A. Melamine and Derivatives of Melamine [J]. Chemical Reviews, 1958,58(1):131-172.
    [130]Jelesarov I, Bosshard H R. Isothermal Titration Calorimetry and Differential Scanning Calorimetry as Complementary Tools to Investigate the Energetics of Biomolecular Recognition [J]. Journal of molecular recognition,1999,12(1):3-18.
    [131]范崇东,范明辉,盛剑俊.NMR对水分的研究及其在食品科学中的应用[J].食品工业科技,2003,(12):98-100.
    [132]Patel G N, Witt J D, Khanna Y P. Thermochromism in Polydiacetylene Solutions [J]. Journal of Polymer Science:Polymer Physics Edition,1980,18(6):1383-1391.
    [133]Chance R R. Chromism in Polydiacetylene Solutions and Crystals [J]. Macromolecules,1980,13(2):396-398.
    [134]Bangham A D, Home R W. Negative Staining of Phospholipids and Their Structural Modification by Surface-active Agents as Observed in the Electron Microscope [J]. Journal of Molecular Biology,1964,8(5):660-668.
    [135]Singer S J, Nicolson G. The Fluid Mosaic Model of the Structure of Cell Membranes [J]. Science,1972,175(23):720-731.
    [136]Su Y L, Li J R, Jiang L. Chromatic Iimmunoassay Based on Polydiacetylene Vesicles [J]. Colloids and Surfaces B:Biointerfaces,2004,38(1-2):29-33.
    [137]Kolusheva S, Shahal T, Jelinek R. Cation-Selective Color Sensors Composed of Ionophore-Phospholipid-Polydiacetylene Mixed Vesicles [J]. Journal of the American Chemical Society,2000,122(5):776-780.
    [138]Charych D H, Nagy J O, Spevak W, et al. Direct Calorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly [J]. Science,1993, 261(5121):585-588.
    [139]Reichert A, Nagy J O, Spevak W, et al. Polydiacetylene Liposomes Functionalized with Sialic Acid Bind and Colorimetrically Detect Influenza Virus [J]. Journal of the American Chemical Society,1995,117(2):7301-7306.
    [140]Kolusheva S, Kafri R, Katz M, et al. Rapid Colorimetric Detection of Antibody-epitope Recognition at a Biomimetic Membrane Interface [J]. Journal of the American Chemical Society,2001,123(3):417-422.
    [141]Ma Z, Li J, Jiang L, et al. Colorimetric Detection of Escherichia coli by Polydiacetylene Vesicles Functionalized with Glycolipid [J]. Journal of the American Chemical Society,1998,120(48):12678-12679.
    [142]Li Y, Ma B, Fan Y, et al. Electrochemical and Raman Studies of the Biointeraction between Escherichia coli and Mannose in Polydiacetylene Derivative Supported on the Self-Assembled Monolayers of Octadecanethiol on a Gold Electrode [J]. Analytical Chemistry,2002,74(24):6349-6354.
    [143]Guo C, Zhang R, Jiang L, et al. Investigation on the Temperature Effect of a Mixed Vesicle Composed of Polydiacetylene and BODIPY 558 [J]. Colloids and Surfaces B:Biointerfaces,2007,60(1):41-45.
    [144]Ma G, Cheng Q. A Nanoscale Vesicular Polydiacetylene Sensor for Organic Amines by Fluorescence Recovery [J]. Talanta,2005,67(3):514-519.
    [145]Potisatityuenyong A, Rojanathanes R, Tumcharern G, et al. Electronic Absorption Spectroscopy Probed Side-Chain Movement in Chromic Transitions of Polydiacetylene Vesicles [J]. Langmuir,2008,24 (9):4461-4463.
    [146]Eckhardt H, Baudreaux D S, Chance R R. Effects of Substituent-induced Strain on the Electronic Structure of Polydiacetylenes [J]. Journal of Physical Chemistry,1986, 85(7):4116-4120.
    [147]Bloor D, Chance R R. Polydiacetylenes:Synthesis, Structure and Electronic Properties, NATO Science Series E:Applied Science [M]. Martin Nijhoff Publishers, 1985.
    [148]Kew S J, Hall E A H. pH Response of Carboxy-Terminated Colorimetric Polydiacetylene Vesicles [J]. Analytical Chemistry,2006,78(7):2231-2238.
    [149]Exarhos G J, Risen J W M, Baughman R H. Resonance Raman study of the thermochromic phase transition of a polydiacetylene [J]. Journal of the American Chemical Society,1976,98 (2):481-487.
    [150]Dobrosavljevic V V, Stratt R M. Role of Conformational Disorder in the Electronic Structure of Conjugated Polymers:Substituted Polydiacetylenes [J]. Physical Review B:Condensed Matter and Materials Physics,1987,15(35):2781-2794.
    [151]Orchard B J, Tripathy S K. Molecular Structure and Electronic Property Modification of Poly(diacetylenes) [J]. Macromolecules,1986,19(7):1844-1850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700