用户名: 密码: 验证码:
直流反应和射频磁控溅射制备的Al掺杂ZnO薄膜结构与光学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种新型的直接带隙宽带半导体,室温禁带宽度约为3.37eV,激子束缚能高达60meV。在大气条件下,ZnO具有六方纤锌矿结构。作为新一代的宽禁带半导体材料,ZnO具有优异的光学、电学及压电特性,在发光二极管、光探测器、电致荧光器件、透明导电薄膜、表面声波器等诸多领域有着广泛的应用。ZnO薄膜的制备方法主要有:磁控溅射法、分子束外延、金属有机化学气相沉积、溶胶-凝胶法等。磁控溅射法由于具有设备简单、成本低、易操作、沉积率高、对基底温度的要求相对较低且薄膜的附着性好,其成分在一定程度上可控等优点而被广大研究者广泛采用。
     本论文通过射频磁控溅射和直流反应磁控溅射方法研究了相同条件下,不同Al掺杂对ZnO薄膜的结构及光学特性的影响,从而为ZnO薄膜的研究和应用提供一些实验数据和理论基础。主要研究结果如下:
     1、采用射频磁控溅射法在玻璃衬底上制备了Al-ZnO薄膜,研究了不同Al掺杂量对薄膜结构和光学性质的影响,所有样品都呈现出较强的(0 0 2)衍射峰,有较好的c轴择优取向。薄膜表面平整光滑,晶界较明显。薄膜的平均透射率均在85%以上,并随着Al掺杂量的增加而降低。随着Al掺杂量的增加,薄膜的光学带隙值先增大,后减小,吸收边先蓝移,后红移。这与量子限制模型计算结果变化趋势完全一致。因此量子限制模型可以较好的解释Al掺杂导致ZnO纳米薄膜光学带隙的变化。
     2、采用直流反应磁控溅射方法在玻璃衬底上制备出Al掺杂ZnO薄膜,并研究了薄膜的微观结构,表面形貌及光学特性。结果表明,未掺杂时ZnO薄膜呈现出较强的(0 0 2)衍射峰,这表明薄膜具有垂直于基底平面较好的c轴择优取向,结晶较好,是单晶体。掺杂Al原子后,薄膜均出现(1 0 0)、(0 0 2)、(1 0 1)三个峰,呈现出多晶。通过分析薄膜的透射光谱得到,样品在可见光区的平均透射率均约在82%以上,薄膜的吸收边向短波长方向移动。对Al-ZnO薄膜,影响薄膜透射率的是自由载流子,随着掺杂量的增加,透射率逐渐降低,这与射频磁控溅射制备Al-ZnO薄膜的透射率结果一致。而对未掺杂的ZnO薄膜却显出比掺杂后较低的透射率,我们认为这和薄膜的不均匀及薄膜与衬底材料的界面有关。通过线性拟合得出,随着掺杂量的增加,样品光学带隙值逐渐增大,吸收边蓝移,这与透射结果一致。根据量子限制模型计算所得样品的光学带隙值与线性拟合所得的光学带隙值虽然数据上不是完全吻合,但变化趋势完全一致,因此量子限制模型可以较好的解释Al掺杂导致ZnO薄膜光学带隙的变化。
ZnO is a new-type semiconductor with a direct wide-band-gap of 3.37eV at room temperature. It has a high exciton binding energy of 60meV and hexahedron wurtzite structure at the air condition. It has been investigated extensively because of its interesting electrical, optical and piezoelectric properties making suitable for many applications such as light emitting diodes, photodetectors, electroluminescence, transparent conductive film, surface acoustic waves device and so on. ZnO films have been grown by various deposition methods including magnetron sputtering, molecular beam epitaxy, metal organic chemical vapor deposition and sol-gel process. Magnetron sputtering method is widely used by the researchers because the equipment is simple, low cost, easy operation, high rate of deposition, the requirement of base temperature is lower and good film adhesion, it’s ingredients in a certain extent controllable, etc.
     In this thesis, Al-ZnO films doped with different Al concentration are prepared on glass substrate by DC magnetron sputtering and RF magnetron sputtering system at the same condition. In this way some experimental data and the theoretical basis are provided for the application of ZnO films. The results are summarized as follows:
     1. Al-ZnO films doped with different Al concentration are prepared on glass substrate by RF magnetron sputtering system. We have investigated the influence of the different Al concentration on the microstructure and optical properties of ZnO films. The results show that all the samples have a strong diffraction peak and high preferential orientation in the (0 0 2) crystallographic direction. There are a very smooth surface and obvious grain boundaries. The transmission spectrum and absorption spectrum of Al-ZnO show that Al-ZnO films possess a transmittance of about 85% in the visible region and the transmittance decrease with increasing Al concentration. The optical band edge shift to a shorter wavelength first as Al is incorporated, and then to a longer wavelength with the increasing of Al content. The optical band gaps are calculated based on the quantum confinement model are in good agreement with the experimental values.
     2. Al-ZnO films doped with different Al concentration are prepared on glass substrate by DC magnetron sputtering system. We have investigated the influence of the different Al concentration on the microstructure and optical properties of ZnO films. The results show that the sample of undoped ZnO film have a strong diffraction peak and high preferential orientation in the (0 0 2) crystallographic direction. This is a single crystal. After doped Al atom, the films have the three diffraction peaks which are (1 0 0)、(0 0 2)、(1 0 1) , respectively. The transmission spectrum and absorption spectrum of Al-ZnO show that Al-ZnO films possess a transmittance of about 82% in the visible region. The optical band edge shift to a shorter wavelength first as Al is incorporated. On the Al-ZnO film, affecting the transmission rate of films is free carrier, with the increase of doping content, the transmission rate drops, and RF magnetron sputtering Al-ZnO film transmittance have the same results. While undoped ZnO thin films did not show lower than the transmission rate after doping, we believe that this and the film's uneven and the film and the substrate interface. Obtained by linear fitting, as the doping increases, the value of optical band gap increases, absorption edge blue shift, which is consistent with the transmission. Calculated according to the quantum confinement model of the optical band gap value of the sample and the linear regression from the optical band gap value although no exact data, but exactly the same trend, the quantum confinement model can better explain the Al doping ZnO optical band gap change.
引文
[1] Szyszka B.[J]. Thin Solid Films, 351, 164 (1999).
    [2] Park K C, Ma DY, Kim K H. [J]. Thin Solid Films, 305, 201 (1997).
    [3] Rajesh Das, Tapati Jana, Swati Ray.[J]. Solar Energy Materials and Solar Cells, 86, 207 (2005).
    [4] (?)zgürü, Alivov Y I, Liu C, et al. [J] J. Appl. Phys., 98, 4130 (2005).
    [5] Jaffe J E, Hess A C, [J] Phys. Rev. B., 48, 7903 (1993).
    [6] Jaffe J E, Snyder J A, Lin Z, et al. [J] Phys. Rev. B., 62, 1660 (2000).
    [7] Boca Raton, CRC handbook of chemistry and physics, (1977).
    [8] C. H. Bates, W. B. White, R. Roy, [J] Science, 137, 993 (1962).
    [9] J. M. Recio, M. A. Blanco, V. Lua(?)a, et al. [J] Phys. Rev. B., 58, 8949 (1998).
    [10] Jin B J, Bae S H, Lee S Y, et al. [J] Mater. Sci. Eng. B., 71, 301 (2000).
    [11]黄兴奎,孙奉娄.常州工学院学报, 18(5), 44 (2005).
    [12] Cheng Hsin-Ming, Hsu Hsu-Chen, Tseng Yung-Kuan, et a1. [J] J. Phys. Chem. B., 109(18), 8749 (2005).
    [13] Cheng Hsin-Ming, Liu Y.C, Ma J.G, et a1. [J]. J. Appl. Phys., 254(1-2), 86 (2003).
    [14] Hu J.H, Gordon R.G.. [J]. J. Appl. Phys., 71(2), 880, (1992).
    [15] A.Suzuki, T.Matsushita, N.Wada.Jpn., [J]. J. Appl.Phys., 35, 56 (1996).
    [16] T.Minami, H.Sam, H.Nanto, and S.Takata, Jpn., [J]. J.Appl.Phys., 25, 776 (1986).
    [17] M.dc la L.Olvera, A.Maldonado, R.Asomoza, O.Solorza, and D.R.Acosta, [J]. Thin Solid Films, 394, 242 (2001).
    [18] J.Hu and R.G.Gordon, [J]. Solar Cells, 30, 437 (1991).
    [19] Look D C, [J]. Appl. Phys. Lett., 75(6), 811 (1999).
    [20] R. Groenen, J. L. Linden, van Lierop HRM, et al. [J]. Appl. Surf. Sci., 173(1-2), 40 (2001)
    [21]叶志镇,张银珠,陈汉鸿,何乐年,邹璐,黄靖云,吕建国,电子学报, 31(11), 1605 (2003).
    [22] H. Fabricius, T. Skettrup, P. Bisgaard, [J]. Appl. Optics., 25, 2764 (1986).
    [23] Y. Liu, C. R. Gorla. S. Liang et al. [J]. J. Electron. Mater., 29, 69 (2000).
    [24] Puchert M K, Hartmann A, Lmab R N, [J]. J. Mater. Res., 11(10), 2463 (1996).
    [25]万群,钟俊辉,电子信息材料,北京:冶金工业出版社,(1990).
    [26] Z. L. Wang, J. H. Song. [J]. Science, 312, 242 (2006).
    [27] Andrew P Lee, Brian J Reedy, [J]. Sensors and Actuators B, 60, 35 (1999).
    [28] J. Q. Xu, Y. A. Shun, Q. Y. Pan, et al. [J]. Sensors and Actuators B, 66, 161 (2000).
    [29] Y. K. Min, L. Harry, et al. [J]. Sensors and Actuators B, 93, 435 (2003).
    [30] J. F. Chang, H. H.Kuo, I. C. Leu et al. [J]. Sensors and Actuators B, 84, 258 (2002).
    [1] Seino T. J Vac.Sci.Technol., 20(3), 634 (2002).
    [2]王晓华.[D].中国科学院研究生院(长春光学精密机械与物理研究所)博士学位论文. 2003.
    [3] A. Ycho, J. Appl. Phys. 41, 2780 (1970).
    [4] A. Ycho, Appl. Phys. Lett., 19, 467 (1971).
    [5] A. Ycho, Vac. Sci. Technol., 8, 531 (1971).
    [6] K.Nagahara, H.Takasu, P Forts, et al.[J].J. Crystal Growth, 28(227), 923 (2000).
    [7] B.J.Jin, S.H.Bae, S.Y.Lee, et al.,[J].Materials Science and Engineering B, (17), 301 (2000).
    [8] T-Makino, C.H.Chia, N.T.Tuan, et a1., [J].Appl.Phys.Lett., 24(176), 3549 (2000).
    [9] A.Ohtomo, M.Kawasaki,Y.Sakural, et al., [J]. Matcr. Sci. and Eng.B, 56, 263 (1998).
    [10] H.Fabncius, T-Skettrup, P.Bisgaard, [J]. Appl.Opt., 25 (1986).
    [11]黄胜涛,固体X射线学.北京:高等教育出版社,(1985).
    [12] Wang Y G, Lau S P, Lee H W, et al., Appl. Phys. Lett., 94, 1597 (2003).
    [13]沈凯华,朱文章.半导体光电性质[M].厦门大学出版社,6, (1995).
    [14] Q.Ma, Z.Ye, H.He et al., [J]. Journal of Crystal Growth, 304(l), 64 (2007).
    [15] D.D.Malinovska, H.Niehev, O.Aneglov. [J]. Super lattices and Microstructure, 42(l), 123 (2007).
    [1]汪冬梅,吕军,徐光青等. [J].金属功能材料.15(1), 19 (2008).
    [2] Park K C,Ma D Y,Kim K H. [J]. Thin Solid Films, 305, 201 (1997).
    [3] XU Xiao-li, CHEN Yan, MA Shu-yi,et al. [J]. Applied Surface Science, 255, 1806 (2008).
    [4] Y.C. Liu, S.K. Tung, J.H. Hsieh. [J]. Journal of Crystal Growth, 287, 105 (2006).
    [5] K.L.Chopra, S. Major, D. K. Pandya. [J]. Thin Solid Films, 102, 1 (1983).
    [6]龚恒翔. [D]: [博士学位论文].兰州:兰州大学,(2003).
    [7] R.E.Marotti, P.Giorgi, G.Machado, et al. [J]. Solar Energy Material Solar Cells, 90, 2356 (2006).
    [1]王华. [J].桂林电子工业学院学报.25(2),19 (2005).
    [2]任明放,王华,许积文,杨玲. [J].人工晶体学报.38(5), 1189 (2009).
    [3]汪冬梅,吕军,[J ].金属功能材料. 15(1), 19 (2008).
    [4] Park K C, Ma D Y, Kim K H. [J]. Thin Solid Films, 305 (1997).
    [5]方泽波,龚恒翔,刘雪芹等. [J].物理学报. 52(7), 1748 (2003).
    [6] K. L. Chopra, S. Major, D. K. Pandya. [J]. Thin Solid Films,102,1 (1983).
    [7]龚恒翔. [D]: [博士学位论文].兰州:兰州大学,(2003).
    [8] Fu Zhuxi, Guo Changxin, Lin Bixia, et al.[J]. Chinese Physics Letter, 15(6), 457 (1998).
    [9] R.E. Marotti, P. Giorgi, G. Machado, et al. [J]. Solar Energy Material Solar Cells, 90, 2356 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700