用户名: 密码: 验证码:
东海玉泉构造带及其邻区的构造特征及演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究以大量地震、钻井资料为基础,对玉泉构造及周边区域30几条二维测线、进行了10个地震反射层位(Tg、T34、T32、T30、T20、T16、T12、T10、T0)的标定和构造解释,采用定性与定量、区域构造与局部构造研究相结合的思路,运用剖面伸缩量分析、断层活动速率计算、断层的反转率分析、平衡剖面研究等各种地质分析方法,从几何学、运动学、动力学三个方面对研究区主要目的层系的反转构造样式、反转期次、反转强度、构造演化过程等进行了系统、定量的分析和研究,为盆地的油气资源勘探提供了参考。
     研究发现,玉泉构造主要经历了玉泉、花港、龙井三次构造反转运动,分别对应于可明显识别的T30(始新世末)、T20(渐新世末)、T12(中新世末)三个区域不整合面界面。其中,中新世晚期的龙井运动(T12)是最强的一次扭压反转构造运动,使得早期发育的中央坳陷不断隆升、遭受剥蚀。并最终造就了现今的中央反转构造带构造格局。通过对玉泉构造几何学的研究,我们发现西湖凹陷反转类型丰富,在研究区可识别出五种基本的反转构造样式:上下均正型、下正上逆型、上下均逆型、下凹上凸型、下正上隆型。反转构造平面组合几何形态众多,发育有Y形、反Y形、人字形、入字形、复合Y字形、火字形、似花状和帚状八种反转构造组合样式。从反转强度来看,通过对研究区反转构造活动速率和反转率的定量统计计算结果表明,中央隆起带反转构造的总体上表现为由北部(反转断层活动速率和反转率分别为5.3~5.9m/Ma、0.5~0.96)向南部(反转构造的活动速率和反转率分别为2.3~2.8m/Ma、0.24~0.5)反转强度逐渐减弱的趋势,北部反转断层的穿透性明显强于南部地区的反转断层。
     通过平衡剖面的制作及对玉泉构造区域动力学的了解,得知玉泉构造是由古、始新世开始形成发育的,经历了多阶段的构造演化。在渐新世之前,盆地以裂陷——断陷构造样式为特征;在渐新世——中新世,盆地以坳陷——挤压反转构造样式为主;在上新世以来,以区域稳定沉降为主。新生代大体上演化经历了裂陷阶段、断陷阶段、坳陷阶段、挤压反转阶段和区域性沉降五个阶段,不同的构造演化阶段具有不同的构造作用,控制着盆地内的各种构造样式及圈闭的形成与演化。
     玉泉构造断层发育众多,从其规模大小及影响范围来可分为一、二、三级断裂。此外,通过对研究区内构造图的绘制、研究,可发现反转断层的生成时间是从北向南、从西向东逐渐发展的。
This research based on a large amount of seismic and drilling data carries out calibration and structure interpretation to 10 seismic reflection horizon(Tg、T34、T32、T30、T21、T20、T16、T12、T10、T0) and exceed 30 two-dimensional lines surrounding Yuquan structure. It takes use of the thought of combining quality and quantity,regional and local structure research. Additionally the study apply various geological analysis methods such as section extension analysis,fault activity rate calculation,the reversal rate analysis of fault and balanced section study. In terms of geometry,kinematics and dynamics,the study simulation-analyze and research reverse tectonic style, reverse period, reverse strength and tectonic evolution process of the main target intervals systematically and quantitatively and it offers a reference to the oil and gas exploration of the basin。
     The study found that the Yuquan structure had mainly undergone three tectonic reverse movement such as Yuquan, Huagang and Longjing. The three movements partly correspond to three apparent regional unconformable surface such as T30(late Eocene),T20(late Oligocene),T12(late Miocene).Among them, the late Miocene Longjing movement(T12) is the strongest twisting-pressure reversion tectonic movement,enabling early developed central depressive basin uplift continuously and suffer erosion. Finally it create a modern central reversion structure framework. Because of the research of Yuquan structure geometry,we found that Xihu depressive basin was rich in reversion types and it could identify five basic reversion structure types in the research area:both the upper and lower normal model, lower normal and upper inverse model, both the upper and lower inverse model, lower concave and upper convex model, lower normal and upper uplift model. There are lots of inverse structure planar geometry combinations,such as y-shaped, anti-y-shaped, into-shaped,people-shaped, compound y-shaped. fire-shaped, flower-like-shaped and brush-shaped etc seven inverse tectonic combination styles.As to the inverse strengthen, the calculate result of the inverse tectonic activity rate and the inverse quantitative statistics to the research area showed that the central uplift reverse structure generally displayed a weaken trend from the north part (reverse fault activity rate and reverse the rate of respectively 5.3-5.9m/Ma,0.5-0.96) to the south (inversion tectonic activity rate and reversal rate were 2.3-2.8m/Ma.0.24-0.5).The penetration of northern reverse fault obviously stronger than that of the southern reverse fault.
     Through the production of the balanced section and the regional dynamics of the Yuquan structure, we can know that the Yuquan structure began to develop in the ancient-Eocene and it experienced multi-stage tectonic evolution. Prior to the Oligocene, the basin is characterized by extensional tectonic style. In the Oligocene-Miocene it dominated in extrusive tectonic style. From the Miocene to now it has generally developed regional extensive strike-slip structure. During the Cenozoic era, the basin generally evolve five stages such as the rifting-concave stage, the rupture-concave stage, the depression-concave stage, the reversal depression-concave stage and the regional subsidence stage. Different tectonic evolution stage has different tectonic effect. Every effect controls different tectonic styles and trap development and evolution of the basin.
     Yuquan structure developed a number of faults.It can be divided into one, two, three level fracture by the scope and impact. In addition,Through the drawing of the region structure. It can be found that the formation of reverse fault time is from north to south, from west to east.
引文
[1]刘光鼎,许薇龄,焦荣昌,等.中国海区及邻域地质地球物理特征.北京:科学出版社,1992,215-343
    [2]郭玉贵,李延成.东海大陆架及邻域大地构造演化史.海洋地质与第四纪地质,1997,17:10-11
    [3]王国纯.东海陆架盆地的形成与演化.石油学报,1987,8(4):18-25
    [4]俞何兴.东海盆地的地质构造格架与演化史.福建地质科技情报,1991.(3):23-33
    [5]陶瑞明.从太平洋板块构造探讨东海陆架盆地形成机制和类型划分.中国海上油气(地质),1994,8(1):14-20
    [6]张琴华.东海地区壳体结构演化及其盆地形成机制探讨.大地构造与成矿学,1994,18(4):311-320
    [7]孙肇才.从东海石油地质重要进展看西太平洋大陆边缘新生代构造盆地的构造演化.海相油气地质,2004,9(1-2):1-17
    [8]赵金海.东海中新生代盆地成因机制和演化(上).海洋石油,2004,4:6-9
    [9]李晓兰.东海陆架盆地西湖凹陷油气发现历程回顾.海洋石油,2007,2:14-17
    [10]Lamplugh G W.Structure of the weald and analogues tracts.Quarterly Journal Geological Society,1920,5:75
    [11]Stille H. Grundfragen der Vergleichenden Tektonik. Berlin:Brontrager,1924,2:443.
    [12]Glennie K W,Boegner P L E. Sole pit inversion tectonics Illing L V, Hobson G D. Petroleum geology of the continental shelf of Northrwest Europe. London:Institute of Petroleum,1981,23:110-120
    [13]Bally A W. Tectogenese at seismique reflexion. BulletinSociet y Geologique de France, 1984,7(2):279-285
    [14]Harding T P. Structural inversion at Rambuton.oil field,south Sumatra basin. AAPG Bulletin,1983,63(8):1001-1021
    [15]Harding T P. Seismic characteristics and identification of negative flower structures, positive flower structures and positive structural inversion[J].AAPG Bulletin,1985, 69(4):582-600
    [16]Williams G D,Powell C M,Cooper M A. Geometry and kinematics of inversion tectonics Cooper M A, Williams G P. Inversion tectonics London:Geological Society Special Publication,1989,2:3-15
    [17]Hayward A B,Graham H R. Some geometrical characteristics of inversion Cooper M A,Williams G D.Inversion tectonics London:Geological Society Special Publication, 1989,16:34-56
    [18]Mitra S.Geometry and kinematic evolution of inversion structures. AAPG Bulletin,1993, 77(7):1159-1191
    [19]Paton D A,Macdonald D I M,Underhill J R. Applicability of thin or t hick skinned structural models in a region of multiple inversion episodes,southern South Africa. Journal of Structural Geology,2006,28:1933-1947
    [20]Carrera N,Munoz J A,Sabat F, etal.The role of inversion tectonics in t he structure of the Cordillera Oriental (NW Argentinean Andes).Journal of Structural Geology,2006, 28:1921-1932
    [21]Phillips G, Wilson C J L,Phillips D,etal. Thermochronological (40Ar-39Ar) evidence of Earlv Palaeozoic basin inversion within the southern Prince Charles Mountains,East Antarctica:Implications for East Gondwana. Journal of the Geological Society,2007, 164(4):771-784
    [221 Borba A W,Mizusaki A M P,Santos J O S,etal.U-Pb zircon and 40Ar-39 Ar K-feldspar dating of syn-sedimentary volcanism of the Neoproterozoic Marica Formation:Const raining the age of foreland basin inception and inversion in the Camaqua Basin of sout hern Brazil. Basin Research,2008,20:359-375
    [23]Martinez F J,Castillo J F,Bastardo M. New evidences of positive tectonic inversion in Cretaceus sequences of the block VIIIarea,Maracaibo basin,Venezuela. INTERCIENCIA, 2008,33(6):424-428
    [24]Resak M, Narkiewicz M, Littker. New basin modeling results from the Polish part of the Cent ral European Basin system:Implications for t he Late Cretaceous-Early Paleogene structructural inversion.International Journal of Earth Sciences,2008,97(5):955-972.
    [25]陈昭年,陈发景.松辽盆地反转构造运动学特征.现代地质,1996,10(3):390-396
    [26]王国纯.中国东部海域中生界地质特征及含油气前景.中国海上油气(地质),1994,8(02):91-98
    [27]王国纯.中国近海盆地的正反转构造及其石油地质意义.中国海上油气(地质),1995,9(01):33-39
    [28]林畅松,张燕梅.盆地的形成和充填过程模拟——以拉伸盆地为例.地学前缘,1999,6(1):139-145
    [29]周祖翼,贾健谊,李家彪,等.东海西湖凹陷反转构造定量研究:来自裂变径迹分析数据的约束.海洋地质与第四纪地质,2002,22(01):63-66
    [30]周祖翼.反转构造.地质科技情报,1994,13(1):3-10
    [31]陈志勇,葛和平.西湖凹陷反转构造与油气聚集.中国海上油气,2003,17(1):20-24
    [32]顾惠荣,叶加仁,郝芳.西湖凹陷平湖构造带油气分布规律.石油与天然气地质,2005,26(1):104-108
    [33]张敏强,钟志洪,夏斌,等.东海西湖凹陷中南部晚中新世构造反转与油气运聚.中国海上油气,2005,17(02):73-79
    [34]武法东,张燕梅,周平,等.东海陆架盆地第三系沉积构造动力背景分析.现代地质,1999,13(2):157-160
    [35]王桥,石永星.东海陆架盆地油气地质勘探与研究简况.海洋石油,1997,3:20-24
    [36]刘金水,廖宗廷,周祖翼,等.东海陆架盆地地质结构及构造演化.上海地质,2003,3:1-6
    [37]刘卫红,林畅松,郭泽清,等.东海陆架盆地西湖凹陷新生代反转构造样式及其形成机制初探.地质科学,2009,44(1):74-87
    [38]支家生.东海陆架盆地的构造演化与油气分别.中国海上油气,1990,4(5):10
    [39]冯晓杰,蔡东升.东海陆架盆地中新生代构造演化对烃源岩分布的控制作用.中国海上油气,2006,18:372-375
    [40]谢月芳,陈敏娟,王坚勇.东海西湖凹陷浙东中央背斜带中南部油气成藏规律与晚期剪切断层的关系探讨.海洋石油,2002,112:8-12
    [41]贾成业,夏斌,王核,等.东海陆架盆地丽水凹陷构造演化及油气地质分析.天然气地质学.2006,17(3):12-17
    [42]冯晓杰,蔡东升,王春修,等.东海陆架盆地中新生代构造演化特征.中国海上油气(地质),2003,17(1):33-36
    [43]须雪豪,陈琳琳,汪企浩.东海陆架盆地中生界地质特征与油气资源潜力浅析.海洋石油,2004.24(3):1-7
    [44]胡望水,周延军,刘学峰.正反转构造综合分析原理和方法.北京:石油工业出版社,2001,23-36
    [45]刘和甫.伸展构造及其反转作用.地学前缘(中国地质大学,北京),1995,2(1-2):113-124
    [46]陈昭年,陈发景.转构造与油气圈闭.地学前缘,1995,2(3):96-101
    [47]宋延光,于百莲,韩殿杰,等.正反转构造的类型和特点.地球科学,1995,20(3):271-275
    [48]李勤英,罗凤芝,苗翠芝.断层活动速率研究方法及应用探讨.断块油气田,1997,7(2):15-17
    [49]Song T G, Inversion styles in the Songliao basin (northeast China) and estimation of the degree of inversion. Tectonophysics,1997,283:173-188
    [50]Okada H, Sakai T. Nature and development of Late Mesozoic sedimentary basins in southwest Japan. Paleogeography, Palaeoclimatology, Palaeoecology,1993,105:3-16
    [51]陈斯忠.海盆地主要地质特点及找气方向.中国海上油气(地质),2003,17(1):6-13
    [52]郑求根,周祖翼,蔡立国,等.东海陆架盆地新生代构造背景及演化.石油与天然气地质,2005,26(2):198-200
    [53]许浚远,张凌云.西北太平洋边缘新生代盆地成因(下):后裂谷期构造演化.石油与天然气地质,2000,21(4):287-292
    [54]靳久强,宋建国.中国板块构造对含油气盆地演化和油气分布持征的控制.石油与天然气地质,2005,26(1):2-8
    [55]李武显,周新民.中国东南部晚中生代俯冲带探索.高校地质学报,1999,5(2):164-169
    [56]Dahlstrom C D A.Balanced cross section.Canadion Journal of Earth Science,1969,6: 743-757
    [57]徐志康,俞晓晨.古垂线法平衡地震剖面研究.石油地球物理勘探,1995,30(01):125-131
    [58]Ramsay J G, Huber M I. The Techniques of Modern Structural Geology Folds and Fractures.London:Academic,1987,10:46-49
    [59]Elliott D.T he construction of balanced cross-sections. Journal of structral Geolog y, 1983,15:101
    [60]颜丹平,田崇鲁,孟令波,等.伸展构造盆地的平衡剖面及其构造意义——以松辽盆地南部为例.地球科学-中国地质大学学报,2003,28(03):275-279
    [61]漆家福,Groshong R H Jr,杨桥.用面积平衡原理预测伸展断陷盆地中岩层内部应变及亚分辨正断层的方法.地球科学-中国地质大学学报,2002,27(06):696-701
    [62]张功成,梁慧社,徐宏,等.平衡剖面正演模拟技术在松辽盆地构造分析中的应用.西安石油学院学报(自然科学版),1999,(02):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700