用户名: 密码: 验证码:
高浓度污泥分区机理及适用组件研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保证废水生物处理系统的出水水质,工艺末端都需进行液固分离,其中以二沉池(重力沉降)和膜分离(机械筛分)较为常见。实践表明,当系统内污泥浓度增高时,液固分离稳定运行的难度加大。对二沉池而言,进池污泥浓度超过4gMLSS/L,则出水水质恶化,出水悬浮物明显升高。对膜分离来说,较高的污泥浓度(>10gMLSS/L)运行导致膜堵塞加剧、能耗骤升、膜清洗/更换费用显著增加。因此,高污泥浓度是制约二沉池和膜分离稳定运行的共性关键因素。如果能开发一种廉价可靠的技术,使得进泥浓度人为控制在3-5gMLSS/L,那么高浓度污泥对液固分离单元的限制即可解除。如此一来,生化单元便可维持在相对较高的污泥浓度稳定运行,从而提升处理效率、减少剩余污泥排放并降低总体能耗。
     本研究自主研制一种次毫米过滤组件(SMFM, Sub-millifiltration module),并通过此组件对高浓度污泥的部分分离作用对反应器内的高浓度污泥强制调控分区,从而实现高、低污泥浓度的分区,保证进入二沉池和MBR区的污泥浓度在较佳的范围内,解除高浓度污泥对污水生物处理系统的束缚。
     本文进行了以下几方面的研究:1.对高浓度污泥分区的机制机理进行了研究;2.对不同运行工况下(反应器内温度分别为20℃和5℃)高浓度污泥分区适用组件的研制进行了研究,为适用组件的研制提供合适的孔径范围。取得的主要成果有:
     (1)对高浓度污泥分区进行物料衡算,得到稳态条件下两区(A区和B区)微生物浓度的理论计算公式。并从理论上分析XA、XB(微生物浓度)的变化规律,XA主要同HRTA(水力停留时间)以及进水COD浓度有关,HRTA越长,XA越小,进水COD越大,XA越大;XB主要同R(回流比)以及XA,B(次毫米过滤区出水微生物浓度)有关,R越大,XB越小,XA,B越大,XB越大。
     (2)运行工况一(反应器内温度为20℃)试验:单周期运行时,最适用于高浓度污泥分区的过滤组件孔径为1.236mm,在初始通量为450L/m2.h,运行周期在20min内的出水平均通量为380 L/m2.h,平均SS为3.5g/L。多周期运行时,最适用于高浓度污泥分区的过滤组件孔径为0.581mm左右,稳定通量和稳定期SS为140L/m2.h和2.5g/L,稳定运行周期从第18个周期到第80个周期。其中0.581mm孔径以下的组件在此工况下运行时,过滤组件出水SS都能长周期的保持稳定并满足分区要求。
     (3)运行工况二(反应器内温度为5℃)试验:在此运行工况下,过滤组件孔径在0.329mm以上时出水SS不能满足分区要求,所以不适用于工程实践中。本工况下最适用于高浓度污泥分区的过滤组件孔径在0.05-0.1mm之间。其中孔径为0.05mm的过滤组件在初始通量450L/m2.h、运行周期20min运行时,稳定通量可以达到170L/m2.h,为MBR膜通量的15-30倍左右,而且在此通量下系统可以稳定运行80个周期。
     综合考虑运行工况一和运行工况二,适用于高浓度污泥分区的次毫米过滤组件研制应在0.05-0.1mm之间。
To ensure the effusive water quality in sewage biological disposal system,process ending are in need of solid-liquid separation, in which the secondary settling tank and membrane separation are more common. Practice shows that when the sludge concentration increased within the system, the stable operation of solid-liquid separation more difficult.
     a) When sludge concentration into the secondary settling tank more than 4gMLSS/L, the effusive water quality will deterioration, effluent suspended solids increased significantly.
     b) The high sludge concentration (>10gMLSS/L) leads to severe membrane plugging,increased enery consumption and costs of membrane cleaning/ replacement.
     Therefore, high sludge concentration is the common key to constraint secondary settling tank and membrane separation stable operation.If we can develop a cheap and reliable technology, making the sludge concentration into the reactor control 3-5gMLSS/L, then the high sludge concentration on the solid-liquid separation unit of the restrictions can be resolved. Thus, biochemical unit can be maintained at a relatively high sludge concentration and stable operation, so as to enhance processing efficiency, reduce excess sludge and lower overall energy consumption.
     A homemade sub-millifiltration module was introduced in this research,by separate function that confined high concentration of activated sludge within one tank,for desired appropriate sludge concentration in another tank, to ensure the sludge concentration access to the secondary settling tank and MBR in the context of better.so that sewage biological disposal system can relieve the restraint of high concentration sludge.
     Research contents as followed:a) separate mechanism of high concentration sludge,b) study on the application modules in different working conditions (the temperature in the container are 20℃and 5℃), and provide appropriate pore size range for application modules.the following outcomes can be achieved:
     (i) Through mass balance of the system,we can get the theory formula about sludge concentration(MLSS) of the two subareas(A and B area) under stable operation conditions. Except that,we can also gain the variation law in the theory:XA decreases while HRTA increases, XA increases while influent COD increases, XB decreases as R ascendes. And the higher the XA,B,the higher the XB.
     (ii) Operation condition one(the temperature in reactor was setted in 20℃):the operation in a cycle,the optimal module appropriate size was 1.236mm, and initial flux was 450L/m2.h,after 20 minutes, the average flux was 380 L/m2.h and SS was obtained 3.5g/L.The operation in multicycles,the best suitable size was 0.581mm,the stable flux and SS were 140L/m2.h and 2.5g/L respectively, stable operation cycle period from 18 to 80 cycles. The following module of which 0.581mm, effluent SS can remain stable long-cycles and meet requirement.
     (iii) Operation condition two(the temperature in reactor was setted in 5℃):In this operation condition, filter module size above 0.329mm can not meet the requirement, does not apply to engineering practice.The optimal module suitable size was between 0.05mm and 0.1mm.Under appropriate size 0.05mm and initial flux 450L/m2.h conditions, after 20 minutes, the stable flux was 170L/m2.h,15~30-folds higher than ultra/microfiltration.and the system can operate steadily 80 cycles.
     A comprehensive consideration of operating condition one and operating condition two, for subarea of high concentration sludge of the modules were introduced should be between 0.05-0.1mm.
引文
[1]于广平,苑明哲,王宏.活性污泥法污水处理数学模型的发展和应用[J].信息与控制,2006,35(5):614~618
    [2]王晓雪.港口含油污水生化处理技术研究及应用.[硕士学位论文].长沙:长沙理工大学,2009
    [3]胡雪敏.城市生活污水的生活处理[J].中国科技信息,2009,11:17~20
    [4]张传贵.谈废水的生物处理.生物学通报,2002,37(5):31
    [5]高廷耀.水污染控制工程[M].北京:高等教育出版社,1989:174~175
    [6]初开艳,董滨,傅钢等.悬浮填料滤池固液分离新技术的中试试验研究[J].四川环境,2006,25(5):25~28
    [7]Chaize S.and Huyard A.Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach[J].Water Sci.Technol,1991,23,1591~1581
    [8]于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水,2006,37(2):1-6
    [9]黄霞.膜生物反应器废水处理工艺的研究进展[J].环境科学研究,1998,11(1):40~44
    [10]牛涛涛,汪建根,李振玉等.膜生物反应器在污水处理中的应用及其前景展望[J].环境研究与监测,2008,21(1):36~47
    [11]何义亮,顾国维.膜生物反应器技术的研究和应用展望[J].上海环境科学,1998,17(7):17~30
    [12]Masaru Uehara. Membrane bio-reactor for wastewater treatment. China-Japan International Symposium on Membrane Hybrid System Applied to Water Treatment Proceedings [C].1999,48
    [13]张全忠,韩春梅.膜生物反应器的应用现状及存在的问题[J].环境科学与管理,2005,30(4):42~46
    [14]李燕,李昂,张雁秋.城市污水处理厂提高污泥浓度的理论与实践[J].环境污染与防治,2009,31(2):103~104
    [15]封莉,张立秋,吕炳南.污泥浓度对膜生物反应器运行特性的影响研究[J].哈尔滨工业大学学报,2003,35(3):703~013
    [16]张科杰,邢国平,张云霞.污泥浓度对膜生物反应器运行效果的影响分析[J].环境保护科学,2004,121:19~21
    [17]孙孝龙,普红平.新型废水处理技术-膜分离生物反应器(MBR)[J].环境科学与技术,2003,26(5):49~52
    [18]Metcarf,Eddy, Wastewater Engineering Treatment Disposal Reuse,3rd Edition, McGarw-Hill,New York,1991
    [19]Tom Stephenson, Simon judd, Bruce Jefferson,etal.Membrane Bioreactor for wastewater treatment[M]IWA publishing London SWIHVQS,UK,2000.
    [20]孙小平,张丙珍,韩明.城市污水处理厂污泥处理处置刍议.地下水,2008,30(4):711-421
    [21]刘锐,黄霞,汪诚文等.一体式膜生物反应器长期运行中的膜污染控制[J].环境科学, 2000,21(2):58~61.
    [22]Defrance L, Jaffrin M Y, Gupta B, Paullier P, Geaugey V.Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology,2000,73:105~112
    [23]武小鹰,郑平,徐红.动态膜技术及其在环境工程中的应用[J].膜科学与技术,2003,23(3):49~53
    [24]Chiemchaisri.C,Wong Y K,Urase T,et al.Organic Stabilization and Nitrogen Removal in Membrane Separation Bioreactor for Domestic Wastewater Treatment[J]. Water Sci. Technol, 1992,25(10):231~240
    [25]Lee J,Ahn W Y,Lee C H.Comprison of the Filration Characteristics between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor[J].Water Res, 2001,35(10):2435~2445
    [26]Megat Johari.Performance of flexible membrane using kaolin dynamic membrane in treating domestic wasterwater[J].Desalination,2002,147:263~368
    [27]Bin Fan and Xia Huang.Characteristics of a Self-Forming Dynamic Membrane Coupled with a Bioreactor for Municipal Wasterwater Treatment[J].Environ.Sci.Technol,2002,36:5245~5251
    [28]余珂,董滨,周增炎等.动态膜生物反应器的工艺研究现状及发展方向[J].净水技术,2006,25(2):14~18
    [29]范(王莹)(王莹).自生动态膜-生物反应器处理生活污水的特性及影响因素研究.[硕士学位论文].北京:中国地质大学,2005
    [30]卓琳云.动态膜及其在分体式膜-生物反应器中应用的研究.[硕士学位论文].上海:东华大学,2005
    [31]邱宪锋.新型动态膜生物反应器的研究与应用.[硕十学位论文].济南:山东大学,2007
    [32]唐彬.新型动态膜生物反应器处理城市污水的试验研究.[硕士学位论文].武汉:武汉理工大学,2008
    [33]孔立志,邱宪锋.微网动态膜生物反应器的研究进展.中国环境管理干部学院学报,2008,18(3):62~65
    [34]KisoY, Jung Y J, Ichinari T, et al. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material[J].Wat. Res,2000,34(17):4143~4150
    [35]Wang W, Jung Y J, et al.Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit.Process Biochemistry,2006,41 (4):745~751
    [36]Fuchs W, Resch C, Kernstock M,et al. Influence of operational conditions on the performance of a mesh filter activated sludge process[J]. Wat Res,2005,39 (5):803~810
    [37]Seo G T, Moom B H, Lee T S, et al.Non-woven fabric filter separation activated sludge Reactor for domestic wastewater reclamation [J]. Water Science and Technology,2003,47(1): 133~138
    [38]Alavi M R, Satoh H.Performance of coarse pore filtration activated sludge system[J]. Water Science and Technology,2002,46(11-12):71~76
    [39]范彬,黄霞,文湘华等.微网生物动态膜过滤性能的研究[J].环境科学,2003,24(1): 91~97
    [40]范彬,黄霞,文湘华等.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51~56
    [41]吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性[J].中国给水排水,2004,20(2):5-7
    [42]吴季勇,华敏洁,高运川.自生生物动态膜反应器处理市政污水的特性.上海师范大学学报(自然科学版),2004,33(4):89~95
    [43]熊丽,濮文虹,杨昌柱等.动态膜生物反应器处理生活污水的特性.化学与生物工程,2005(1):31~33
    [44]初里冰,李书平.动态膜生物反应器的过滤性能及运行特性研究[J].工业水处理,2006,26(4):66~69
    [45]周彦,濮文虹,杨昌柱等.动态膜-生物反应器对化粪池废水的处理[J].环境科学与技术,2007(5):75~77
    [46]林新斌,傅大放.非织造布动态膜生物反应器处理生活污水的研究[J].中国给水排水,2007,23(13):66~68
    [47]邱宪峰,张建,高宝玉等.内循环动态膜生物反应器处理生活污水[J].中国环境科学2007,27(2):165~168
    [48]董春松,樊耀波,李刚等.新型管式动态膜生物反应器及处理垃圾渗滤液的研究[J].环境科学,2007,28(4):747~753
    [49]刘宏波,杨昌柱,濮文虹等.自生生物动态膜生物反应器在城市污水处理中的应用[J].水处理技术,2007,33(11):67~70
    [50]薛念涛,黄霞,夏俊林.自生动态膜生物反应器处理城市污水的中试研究[J].中国给水排水,2008,24(15):20~27
    [51]吴志超,田陆梅,王旭等.动态膜-生物反应器处理城市污水的运行特性研究[J].环境污染与防治,2008,30(5):74~05
    [52]许晓光,段文松,傅大放等.序批式动态膜生物反应器工艺参数优化.环境科技,2009,22(5):4-10
    [53]许葆玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000
    [54]顾夏声.废水生物处理数学模型(第二版)[M].北京:清华大学出版社,1993:68
    [55]许春生,赫俊国.A/O复合式生物膜工艺缺氧段的动力学模型[J].中国给水排水,2006,22(13):74~81
    [56]王燕.A/O膜生物反应器处理生活污水试验研究[J].环境保护科学,2009,35(2):48~51
    [57]孙俊杰,徐国勋.膜生物反应器处理生活污水的研究.上海理工大学学报,2004,26(1):85~88
    [58]吴桂萍,崔龙哲,陆晓华等.一体式膜生物反应器处理生活污水的试验研究.中国给水排水,2007,23(7):55~61
    [59]卢建国.缺氧-好氧生物滤池处理城市污水试验研究.[硕士学位论文].太原:太原理工大学,2008
    [60]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993:24
    [61]杨造燕,匡志花,顾平等.膜生物反应器无剩余污泥排放的研究[J].城市环境与城市生态,1999,12(1):16~18
    [62]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989
    [63]高方述.MBR系统污泥形态对膜污染的影响研究.[硕士学位论文].无锡:江南大学,2005
    [64]吴成强,杨金翠,杨敏等.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(9): 5-7
    [65]高松.动态膜生物反应器工艺研究.[工学硕士学位论文].上海:同济大学,2005
    [66]M.R.Alavi Moghaddam,H.Satoch and T.Mino.Effect of important operational parameters on performance of coarse pore flitration activated sludge process[J]. Water Science Technology, 2002,46(9):229~236
    [67]范彬,黄霞,栾兆坤.出水水头对自生生物动态膜过滤性能的影响[J].环境科学,2003,24(5):65~69
    [68]张建,邱宪锋,高宝玉等.逆出水方向曝气反冲洗在动态膜生物反应器中的应用[J].环境科学,2007,28(6):1241-1244
    [69]张建,邱宪锋,高宝玉等.动态膜生物反应器-混凝工艺处理草浆中段废水.中国造纸,2007,26(6):8-11
    [70]杨昌柱,刘宏波,濮文虹等.自生动态膜生物反应器处理城市污水[J].中国给水排水,2006,22(1):501~801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700