用户名: 密码: 验证码:
沼气化学能快速高效储存太阳热能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为清洁、对环境友好的绿色能源,可再生能源的规模开发利用已经成为21世纪解决化石能源造成的能源短缺、环境污染和温室效应等问题的重要途径。其中,太阳能集热技术和沼气技术的推广和应用备受瞩目。然而,由于太阳辐射能量密度小、太阳辐射随季节、昼夜、气候影响大、太阳能很难储存等因素的制约,太阳热能的规模利用受到了巨大限制。同时,传统沼气技术也受到季节、昼夜、气候等因素的严重制约,传统沼气池产气率低、产气量少、冬季不产气的现象普遍存在。
     为了克服传统太阳能集热技术和沼气技术的不足,本文将这两种技术结合起来,优势互补,提出了一种沼气化学能高效快速储存太阳能的新方法,并将装置在兰州地区进行了实验研究,对其热力性能、经济效益和环保效益进行了分析,获得了如下结果:
     1.有效容积4m3的装置在冬季日产沼气2.4 m3,容积产气率达0.6m3/(m3.d)。,发酵周期约为30天。在温度较高季节,产气量还会大幅增加,可实现全年的稳定高效供能;
     2.装置的集热、换热及温控部分协同状况良好,实现了恒温发酵。
     3.装置在冬季储存太阳热能效率达到了0.65,实现了低品位、不稳定的太阳热能(能量品位0.074)和较高品位生物质能(能量品位0.419)向高品位、稳定的沼气化学能(能量品位0.830)的转化,实现了太阳热能的稳定储存
     4.对装置进行了动态性经济分析,项目的财务净现值NPV(i=10%)为6794.35元,内部收益率IRR为26.46%,益本比为1.50,动态投资回收期为5.2年。
     5.装置具有良好的生态效益以及社会效益。每年可以可保护森林面积0.44公顷,以替代燃煤量为标准年可减排二氧化碳1.30t,二氧化硫0.026t;比之传统农村户用沼气池,年可减排CO21.03t,减排SO20.021t;还可以起到提高农民生活质量、节省劳力、推动科普、优化产业结构等各方面的作用。
     本课题的创新点是:提出了一种利用沼气化学能储存太阳热能的新方法,并从理论上初步定量揭示了转化储存过程中的能量转化效率和能量品位提升机理。
     上述研究成果具有重要的学术价值和良好的社会经济效益。它提出了一种低温太阳热能储存的新模式,即太阳能集热--沼气化学能储存,实现了低品位、不稳定太阳热能和较低品味生物质能向稳定、高品位、高能量密度沼气能的高效转化,从理论和技术两方面突破了昼夜、季节、气候等因素对传统太阳能集热或生物质厌氧发酵的束缚,拓展了传统太阳能集热技术与生物制厌氧发酵技术的应用领域,实现了太阳热能和生物质能高效低成本规模开发。在国家政策的大力扶持下,这些研究成果可广泛用于沼气发电、城市固体废弃物资源利用、污水处理、规模畜禽养殖场粪污厌氧处理以及酿酒制糖业等工业有机废水厌氧处理等领域。另外,这些研究成果对利用农村能源解决农村能源需求,推动社会主义新农村建设,调整我国能源结构,发展可再生能源和替代燃料技术两方面均有积极作用,并且能够大幅度节能,降低环境排放,具有良好的社会效益。
As a clean, environmentally friendly green energy, the large-scale development and utilization of renewable energy has become an important way to solve the 21st century to solve the energy shortage, environmental pollution, the greenhouse effect and other issues caused by fossil fuels. Among them, The promotion and application of the solar collection and biogas technology attract much attention. However, the large-scale use of solar thermal energy is still subject to some limitations:the solar radiation energy density Earth receiving is low, the intermittent solar radiation and its fluctuation with day and night, seasons and climate, it's difficult to store solar energy. Meanwhile, the traditional biogas technology also subject to day and night, seasons, climates and other factors. The phenomenon of low gas production rate, less gas production and no gas production in winter of the conventional digesters is widespread.
     To compensate for the lack of the solar collection and biogas technology, we combine these two techniques with each other's advantages. A new method of fast and efficient solar heat storage with biogas was put forward. An experimental study on the device was carried out in Lanzhou. Analysised its thermal performance, economic and environmental benefits, we obtained the following results:
     1. The device of effective volume 4 m3 can produce biogas 2.4 m3 per day in winter. Its volume gas production rate archived 0.6m3/(m3·d). The fermentation time was about 30 days. The gas production rate will increase substantial in the warm season. The device can supply energy stably and efficiently throughout the year;
     2. The collaboration of heating, heat transfer and temperature control part is good. The device can archive constant temperature fermentation;
     3. In winter, the solar heat storage efficiency was up to 0.65. It transformed the low-grade (energy grade,0.074) unstable solar energy and biomass energy (energy grade,0.419) to the high-grade stable biogas chemical energy (energy grade, 0.830)and achieved significantly improve on the energy grade;
     4. Using the method of dynamic economic to appraise the entire system. The project's financial net present value NPV (i=10%) was¥6794.35, internal rate of return IRR was 26.46%, the internal returns ratio was 1.50, the dynamic investment recovery period was 5.2 years;
     5. Device has a good ecological benefit and social benefit. Protection of forest area per year can be 0.44 ha..Coal burning replaced as the standard, the annual emissions of carbon dioxide and sulfur dioxide can be 1.30t and 0.026t per year; Compared with the conventional digester, the annual emissions of carbon dioxide and sulfur dioxide can be 1.03t and 0.021t per year. It also can play an important role in improving living quality of farmers, labor-saving, promoting science, optimizing the industrial structure and other aspects.
     The innovation of this topic is:A new method of fast and efficient solar heat storage with biogas was put forward. The energy conversion efficiency and upgrade principle of energy grade was initial quantitative theoretical revealed in the process of transforming.
     The findings have important academic values and good social and economic benefits. It presents a new low-temperature solar thermal energy storage mode, the solar collector-gas chemical energy storage, which achieved the efficient conversation of low-grade unstable solar heat and low-grade biomass energy to the high-grade stable high-energy-density biogas energy. It breaks out the limits of the day and night, seasons, weather and other factors theoretically and technically, expands the applications of traditional solar collector system and anaerobic fermentation technology, achieves high efficiency and low cost development of solar heat and biomass energy. In the strong support from national policy, these finding can be used broadly in biogas power generation, municipal solid waste resource use, wastewater treatment, large-scale anaerobic treatment of livestock manure and organic wastewater anaerobic treatment in wine sugar industry and other industrial areas. Moreover, the results of these studies have positive effects on meeting rural energy needs using rural energy, promoting the building of socialist new countryside, China's energy structure adjustment, the development of renewable energy and alternative fuel technologies. It can save energy significantly,reduce environmental releases, and have good social benefits.
引文
[1]Noam Lior. Energy resources and use:The present situation and possible paths to the future[J].Energy,2008,33(6):842~857.
    [2]Hengyun Ma, Les Oxley,John Gibson. China's energy situation in the new millennium[J]. Renewable and Sustainable Energy Reviews,2009.10,13(8):1781~1799.
    [3]郭祥冰.世界可再生能源发展概况和我国发展目标[J].福建能源开发与节约,2001,(3):6-9.
    [4]常振明,韩平,曲春洪.可再生能源利用现状与未来展望[J].当代石化,2004,1 2(12):19~23.
    [5]赵玉文.太阳能利用技术的发展概况和趋势[J].中国电力,2003,36(9):63~69.
    [6]史立山.中国能源现状分析和可再生能源发展规划[J].可再生能源,2004,12(5):1~4.
    [7]李华山,贾晓丽,冯亮.太阳能热储存技术研究.http://www.newenergy.org.cn/Html/0085/5310817838.html, (2008-5-31).
    [8]王黎春,刘钺,杜风光.我国生物质能源现状及前景[J].河南化工,2009,(09):15~19.
    [9]孙孝政,夏吉庆,田晓峰.厌氧发酵技术工厂化生产沼气的现状及展望[J].东北农业大学学报,2005,36(1):109~112.
    [10]Bryant, M.P..Microbial Methane Production-Theoretical Aspects[J]. Animal Science,1979,(48):193~201.
    [11]J.C.Young, P.L.J.McCarty. Water Pollution[J].Control.Fed,1969, (41):160.
    [12]J.G.Zeikus. Microbial Population in Digester. Anaerobic Digestion[J]. Applied Science Publisher,1979:66~89.
    [13]J.Callander and J.P.Barford. Recent Advances in Anaerobic Digestion[J].Technology, Process Biochemistry,1983,18(4):24~30
    [14]G.Lettinga et al.Biotechnology.Bioengin,1980,22(4):699~734.
    [15]G.R.Zoutberg, R.Frankin. Anaerobic Treatment of Chemical and Brewery Wasterwater with a New Type of Anaerobic Reactor:the biobed EGSB Reactor[J].Wat.Sci.Tech,1996,34(5-6):375~381.
    [16]Wang Kaijun. Development of Anaerobic Process and New Type Anaerobic Reactor[J].Environment Science,1998,(1):94~96.
    [17]Speece.R.E. Anaerobic Digestion of Biomass[J].Elsevier Applied Science Pub,1987,(04):109~128.
    [18]Gunaseelan V N. Anaerobic digestion of biomass for methane productionareview[J].Biomass and bioenergy,1997,13(1):83~114
    [19]王家俊,胡瑞,刘建红.俄罗斯沼气技术发展动向[J].中国沼气,1998,16(1):49~50.
    [20]刘继芬.德国农村沼气利用概况[J].世界农业,2005,(1):36~38.
    [21]寿亦丰.美国沼气产业发展现状与趋势[J].农业工程技术-新能源产业,2009,(1):15~18.
    [22]John Stumbos. Methane generators turn agricultural waste into energy[J].California Agriculture,2001,55(5):56~58
    [23]V.K.VIJAY,R.PRASAD,J.P.SINGH and V.P.SORAYAN.A case for biogas energy application for rural industries in India[J].Centre for Rural Development and Technology Indian Institute of Technology, 1996:994-996.
    [24]胡启春.国外厌氧处理城镇生活污水技术的应用现状和发展趋势.中国沼气,1998,16(2):11~15.
    [25]屠云璋.中国沼气发展现状[A].Section V of CIGR, Proceeding of the Forum of Rural Power and Bio-energy Resource[C].北京:中国农业大学可再生能源实验室,2004:178-182.
    [26]沼气发展的几个阶段.http://www.zjagri.gov.cn/html/ncny/informationView/2006012559194. html,(2003-09-01).
    [27]杨东海.生物质能源现状与政策解读[J].中国新能源,2009,(5):7~8.
    [28]张晶.生物质能产业发展难在哪[N].科技日报,2009.4.16,(1).
    [29]MATTHEW L.WALD. New Ways to Store Solar Energy for Nighttime and Cloudy Days.Environment,2008.6,14(6):34~37.
    [30]颜丽,刘膺虎.我国大中型沼气工程现状及发展前景探讨[J].中国沼气,1996,14(1):19~22.
    [31]高云超,邝哲师,潘木水等.我国农村户用型沼气的发展历程及现状分析[J].广东农业科学,2006,(11):22~27.
    [32]K.Vinoth Kumar, R.Kasturi Bai. Solar greenhouse assisted biogas plant in hilly region-A field study. Solar Energy,2008.10,82(10):911~917.
    [33]T.M.ALKHAMIS,R.EL-KHAZALI,M.M.KABLAN and M.A. ALHUSEIN.HEATING OF A BIOGAS REACTOR USING A SOLAR ENERGY SYSTEM WITH TEMPERATURE CONTROL UNIT. Solar Energy,2000,69(3):239~247.
    [34]Hamed M, I.Mashad, K.P.van Loon, etje Zeeman. A Model of Solar Energy Utilisation in the Anaerobic Digestion of Cattle Manure. Biosystems Engineering,2003,84(2):231~238.
    [35]P.Axaopoulos, P.Panagakis, et al. Simulation and experimental performance of a solar heated anaerobic digester[J].Solar Energy, 2001,70(2):155~164.
    [36]Hamed M. El-Mashad, Wilko K.P.van Loon, Grietje Zeeman, Gerard P.A. Bot, Gatze Lettinga. Design of A Solar Thermophilic Anaerobic Reactor for Small Farms.Biosystems Engineering,2004,87(3):345~353.
    [37]Prasad Kaparaju, Jukka Rintala, et al.Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure[J].Resources Conservation and Recycling,2005,43(2):175~188.
    [38]F.Raposo, C.J.Banks, I.Siegert, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests[J]. Process Biochemistry,2006,41(6):1444~1450.
    [39]叶子良,刘荣厚.沼气发酵接种物对沼气及沼液成分的影响[J].农机化研究,2007,(6):82-85.
    [40]S.G.Sommer, B.K.Ahringb. Methane productivity of manure, strawand solid fractions of manure[J]. Biomass and Bioenergy,2004,26(5): 485-495.
    [41]Lars Mattias Svensson, Lovisa Bjornsson, et al.Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation[J]. Bioresource Technology,2007,98(1):46~52.
    [42]Rene Alvarez,Gunnar Liden. Semi-continuous co-digestion of solid slaughterhouse waste,manure,and fruit and vegetable waste[J]. Renewable Energy,2008.4,33(4):726~734.
    [43]A.Lehtomaki,S.Huttunen,T.M Lehtinen. Anaerobic digestion of grass silage in batch leach bed processes for methane production[J]. Bioresource Technology,2008.5,99(8):3267~3278.
    [44]董春娟,李亚新,吕炳南.微量金属元素对甲烷菌的激活作用[J].太原理工大学学报,2002,33(5):495-497.
    [45]H.Bouallagui, R.Ben Cheikh,L. Marouani,M.Hamdi. Mesophilic biogas production from fruit and vegetable waste in a tubular digester[J]. Bioresource Technology,2003,86(1):85~89.
    [46]X.Gomez, M.J.Cuetos, A.I.Garcia, A.Moran. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes[J].Journal of Hazardous Materials,2007,03(49):97~105.
    [47]Hong-Wei Yen, David E. Brune. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technology,2007, 98(1):130~134.
    [48]B. Dearman, R.H. Bentham. Anaerobic digestion of food waste: Comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids[J]. Waste Management,2006,08(6): 1792-1799.
    [49]刘荣厚,郝元元等.沼气发酵工艺参数对沼气及沼液成分影响的实验研究[J].农业工程学报,2006,10(22):85~88.
    [50]Thomas Amon, Barbara Amon, Vitaliy Kryvoruchko, et al. Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield[J].Agriculture, Ecosystems and Environment,2007,118(1-4):173~182.
    [51]A.Isci, G.N.Demirer. Biogas production potential from cotton wastes[J]. Renewable Energy,2007,32(5):750~757.
    [52]Sigrid Kusch, Hans Oechsner, Thomas Jungbluth. Biogas production with horse dung in solid-phase digestion systems[J].Bioresource Technology,2008.3,99(5):1280~1292.
    [53]M.R.Al-Masr. Changes in biogas production due to different ratios of some animal [J].Bioresource Technology,2001,77(1):97~100.
    [54]Ruihong Zhang,Hamed M. El-Mashad,Karl Hartman,et al. Characterization of food waste as feedstock for anaerobic digestion[J]. Bioresource Technology,2007,98(4):929~935.
    [55]Anthony Mshandete, Lovisa Bjornsson, et al. Effect of particle size on biogas yield from sisal fibre waste[J].Renewable Energy,2006,31(14): 2385-~2392.
    [56]L.Neves, R.Ribeiro, R.Oliveira, M.M.Alves. Enhancement of methane production from barley waste. Biomass and Bioenergy,2006,30(6): 599-603.
    [57]Bettina B.Browna, Emmanuel K.Yiridoea, Robert Gordon. Impact of single versus multiple policy options on the economic feasibility of biogas energy production:Swine and dairy operations in Nova Scotia[J].Energy Policy,2007,35(9):4597~4610.
    [58]A.Lehtomaki, S.Huttunen, J.A.Rintala. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production:Effect of crop to manure ratio[J].Resources Conservation and Recycling,2007,51(3):591~609.
    [59]J.Biswas, R.Chowdhury, P.Bhattacharya. Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues[J].Biomass and Bioenergy,2007,31(1):80~86.
    [60]John Gelegenis, Dimitris Georgakakis, et al.Optimization of biogas production by co-digesting whey with diluted poultry manure[J]. Renewable Energy,2007,32(13):2147~2160.
    [61]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].北京:化学工业出版社,2004:71-74.
    [62]周梦津,张榕林,蔺金印.沼气实用技术[M].北京:化学工业出版社,2005:34-39.
    [63]Hamed M.El-Mashad, Grietje Zeeman, Wilko K.P.van Loon.Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technology,2004,(95): 191~201.
    [64]Kazutaka UMETSU, Yoshiaki KIMURA, et al. Methane emission from stored dairy manure slurry and slurry after digestion by methne digester[J].Animal Science Journal,2005.2,76(1):73~79.
    [65]G.Kocar, A.Eryasar. An Application of Solar Energy Storage in the Gas: Solar Heated Biogas Plants. Energy Sources,2005.10,27(13): 1512-1519.
    [66]农村家用沼气发酵工艺规程.http://www.zjnw.gov.cn/templates/display_fwb.jsp?articleId=136173, (2007-01-15)
    [67]谭蔚.化工设备设计基础[M].第一版.天津:天津大学出版社:83~93.
    [68]贺匡国.压力容器分析设计基础[M].北京:机械工业出版,1995,第一版:10~12.
    [69]GB4750~4752-84.农村家用水压式沼气池标准图集、农村家用水压式沼气池质量检查验收标准、农村家用水压式沼气池施工操作规程.
    [70]唐受印,戴友芝,汪大翠等.废水处理工程[M].北京:化学工业出版社,2002.8.
    [71]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [72]于海明,周岭,丁羽等.沼气反应器中自动加热恒温系统主要工作部件的参数选择[J].黑龙江八一农垦大学学报,2006,18(2):53~56.
    [73]王学涛.新型高效户用沼气发酵装置实验研究.郑州:河南农业大学,2002.38.
    [74]缪则学,宋明芝等.压强与沼气干发酵关系的研究[J].江苏沼气,1988,6:11-14.
    [75]王荣光,沈天行.可再生能源利用与建筑节能[M].北京:机械工业出版社,2004.
    [76]P. Axaopoulos, P.Panagakis, A.Tsavdaris and D.Georgakakis, Simulation and experimental performance of a solar-heated anaerobic digester[J].Solar Energy,2001,70(2):155~164.
    [77]喜文华.太阳能实用工程技术[M].兰州大学出版,2001.9,第一版:245.
    [78]Thomas Amon, Barbara Amon, Vitaliy Kryvoruchko, et al. Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield[J]. Agriculture, Ecosystems & Environment,2007.1,118(1~4):173~182.
    [79]H.B.M(?)ller, S.G.Sommer, B.K.Ahring. Methane productivity of manure, straw and solid fractions of manure[J]. Biomass and Bioenergy,2004.5, 26(5):485~495.
    [80]ZHANG Xu,WANG Baowei, LIU Yongwei et al. Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge[J]. Chinese Journal of Chemical Engineering,2009,17(4):625~629.
    [81]T. Kodama. High-temperature solar chemistry for converting solar heat to chemical fuels[J]. Progress in Energy and Combustion Science, 2003,29(6):567~597.
    [82]阿里巴巴.供应信息.http://detail.china.alibaba.com/buyer/offerdetail/347176866.html
    [83]王革华.农村能源建设对减排SO2和CO2贡献分析方法[J].农业工程学报,1 999.5,15(1):169~172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700